Exercise 6.1 (b) $$\frac{x-y}{2}$$ (c) $$z$$ z z^2 (d) $$\frac{p-q}{4} \frac{pq}{4}$$ (e) $$x^2 y^2$$ (f) $$3(m \ n)$$ 5 $3mn$ 5 **2.** (a) $$x^2 y^2 z^2$$ trinomial (d) y = 2z binomials (e) $$3x + 4 + 9y$$ trinomials [:: It has 3 terms] (f) $$15z^2$$ 2 binomials [:: It has 2 terms] (g) $$a^2$$ b^2 $9c^2$ Trinomial [:: It has 3 terms] [:: It has 3 terms] 3. (a) like terms $$(9a^2, 4a^2)$$ and $(3b^2, 2b^2)$ (b) like terms $$(2yz, 4yz, 9yz)$$ and $(3xy, \frac{19}{2}yx)$ (c) like terms $$(a^2b^2c, 9a^2cb^2)$$ (d) like terms $$(pqr, 32pqr)$$ (e) like terms $$(x^2y, yx^2, 4x^2y)$$ (f) like terms $(xy^2, 2xy^2)$ (f) like terms $$(xy^2, 2xy^2)$$ **4.** (a) Numerical co-efficients $$\frac{15}{2}$$, 30,6,4 (d) Numerical co-efficients $$-\frac{3}{5}$$, 9, 18 5. (a) $$10y^2z$$ y^2 (10z) Co-efficien of $$y^2$$ (10z) (b) $$14xy^3z \quad y^2 \quad (14xyz)$$ Co-efficient of $$y^2$$ ($14xyz$) (c) $$8y^2 y^2$$ (8) Co-efficient of $$y^2$$ 8 (d) $$\frac{5}{6}y^2x^2z$$ $y^2 \frac{5}{6}x^2z$ Co-efficient of $$y^2 = \frac{5}{6}x^2z$$ (e) $$11x^2y^2z^2$$ $y^2(11x^2z^2)$ Co-efficient of $$y^2 = 11x^2z^2$$ (f) $$32x^2y^4z - y^2(32x^2y^2z)$$ Co-efficient of $$y^2$$ $32x^2y^2z$ **6.** (a) $$5y \ y(5)$$ Coefficient of $$y$$ 5 (b) $$2ab \ a(2b)$$ (c) $$7xy \quad y(7x)$$ Coefficient of $$y = 7x$$ (d) $$3pq p(3q)$$ (e) $9xy^2 y^2(9x)$ Coefficient of $$p$$ 3 q Coefficient of y^2 9 x (f) $$x^3$$ 1 x^3 (1 1) Coefficient of $$x^3$$ 1 (g) $$x^2 x^2 (1)$$ Coefficient of $$x^2$$ (h) $$\frac{5}{7}x^2y$$ x^2 $\frac{5}{7}y$ Coefficient of $$xc^2 - \frac{5}{7}y$$ - 7. (a) 16xyz 4 yz - -16xyz 4yz - (c) a^2b^2c ab 9 - - Degree of 16xyz 3 Degree of 4yz 2 Degree of 16xyz 4yz 3 - (b) $32y^2z 8xy 4$ Degree of $32y^2z - 2 - 1 - 3$ Degree of -8xy - 1 - 1 - 2Degree of -4 - 0Degree of $32y^2z - 8xy - 4 - 3$ - (d) $x^2 y \quad y^2 z$ Degree of $x^2 y \quad 2 \quad 1 \quad 3$ Degree of $y^2 z \quad 2 \quad 1 \quad 3$ - 9. (a) Degree of 4 0 Degree of $(4 y)^2$ Degree of 4 = 0 - (c) Degree of 1 = 0Degree of 2t - 1Degree of $t^3 - 3$ Degree of $(1 - 2t - t^2 - 3t^3) - 3$ - (e) Degree of $4x^3$ 3 Degree of $3x^2$ 2 Degree of 5x 1 Degree of 6 0 Degree of $(4x^2 3x^2 5x 6)$ 3 - (g) Same as (f) - (h) Degree of $4x^3$ 3 Degree of $7x^2y$ 2 1 3 Degree of $5xy^2$ 1 2 3 Degree of 2 0 Degree of $(x^3 7x^2y 5xy^2 2)$ 3 (:: x.y.z 1 1 1 3) - (c) a^2b^2c ab 9 Degree of a^2b^2c 2 2 1 5 Degree of ab 1 1 2 Degree of 9 0 Degree of a^2b^2c ab 9 5 - Degree of $x^2 y$ $y^2 z$ 3 - (b) Degree of 4 = 0Degree of $y^3 = 3$ Degree of $(4 - y^3) = 3$ - (d) Degree of x^2 2 Degree of xy 1 1 2 Degree of $(x^2 xy)$ 2 - (f) Degree of x^2y 2 1 3 Degree of xy^2 1 2 3 Degree of 7xy 1 1 2 Degree of 3 0 Degree of $(x^2y + xy^2 + 7xy + 3)$ 3 - (i) Degree of xy^2 1 2 3 Degree of $4x^2y$ 2 1 3 Degree of $7x^2y$ 2 1 3 Degree of $3xy^2$ 1 2 3 Degree of 3 = 3Degree of - $(xv^2 + 4x^2v + 7x^2v + 3xv^2 + 3) = 3$ ### Exercise 6.2 (c) $$5y^3$$ $26y^3$ $10y^3$ ($3y^3$) $41y^3$ $3y^3$ $38y^3$ (e) $$10ab^2c$$ (ab^2c) $15ab^2c$ ab^2c $10ab^2c$ ab^2c $15ab^2c$ ab^2c $5ab^2c$ (b) $$3x^2$$ ($10x^2$) $4x^2$ $3x^2$ $10x^2$ $4x^2$ $7x^2$ $10x^2$ $3x^2$ (f) $$8x^2y$$ ($11x^2y$) ($8x^2y$) $8x^2y$ $11x^2y$ $8x^2y$ $11x^2y$ (g) $$4x^2y$$ ($3xy^2$) ($5xy^2$) $5x^2y$ $4x^2y$ $3xy^2$ $5xy^2$ $5x^2y$ $9x^2y$ $8xy^2$ ### **2.** By column method : (a) $$x^2 y^2 2xy$$ $3x^2 y^2 4xy$ $+ x^2 y^2 0xy$ $5x^2 3y^2 2xy$ (b) $$x^2 y xy^2$$ $11x^2 y 10xy^2$ $10x^2 y 11xy^2$ $20x^2 y 0$ (c) $$4abc 6a^2 7b$$ $0abc 10a^2 14b$ $2abc 3a^2 06$ $2abc 13a^2 216$ (d) $$2x^2 4y^2 5$$ $x^2 3y^2 10$ $2x^2 4y^2 10$ $x^2 3y^2 5$ # 3. By column method: (a) $$6ab$$ $$18ab$$ $$24ab$$ (b) $$9a^2b$$ $$a^2b$$ $$10a^2b$$ $$(c) 6pq$$ $$19pq$$ $$13pq$$ $$\begin{array}{c|c} (d) & 14xy \\ \hline & 10xy \\ \hline & 2xy \end{array}$$ (e) $$3x^2 \frac{14x^2}{11x^2}$$ (f) $$10x^{3} y$$ $$5x^{3} y$$ $$5x^{3} y$$ 4. (a) $$6a 8b 10$$ $5a 3b 15$ $- + -$ $a 5b 25$ (b) $$3x^2 4x 2$$ $$x^2 2x 7$$ $$+ + -$$ $$4x^2 2x 5$$ (c) $$10y$$ 14 $3x^2$ 5y 7 - + - $3x^2$ 15y 7 (d) $$x^{2} 2xy y^{2}$$ $x^{2} xy y^{2}$ $\frac{- + -}{2x^{2} xy}$ (e) $$2ab^2 3b^2$$ $ab^2 b^2 a^2b$ $\frac{-}{3ab^2 2b^2 a^2b}$ (f) $$6p^3 4p$$ $4p^3 3p^2 2p$ $- - +$ $2p^3 3p^2 2p$ (g) $$2x^{2}$$ $6x^{2}$ $8y$ 9 $+$ $-$ $8x^{2}$ $8y$ 9 (h) $$2a^2$$ $3ab$ $2b^2$ $5a^2$ $7ab$ $5b^2$ - + - $7a^2$ $10ab$ $7b^2$ 5. Here, we have to subtract $$2x^3$$ $4x^2$ $3x$ 1 from $9x^2$ $7x$ 2 $9x^2$ $7x$ 2 **6.** $$10x^3$$ $4x^2$ ⁶ $5x^3$ $11x^2$ 4 $\frac{-}{5x^3}$ $7x^2$ $\frac{10}{5x^3}$ 7. $$\begin{array}{c|cc} 14xyz & 6xy \\ xyz & 7xy \\ + & - \\ \hline 15xyz & xy \end{array}$$ 8. Step 1: $$-7a^{2}b$$ 9 $3ab^{2}$ 2 $+$ - $7a^{2}b$ $3ab^{2}$ 11 Step 2: $$7a^{2}b \quad 3ab^{2} \quad 11$$ $10a^{2}b \quad 4ab^{2}$ - - - 17 $a^{2}b \quad 7ab^{2} \quad 11$ 9. Step 1: $$p^{2}-q^{2}$$ pq $2p^{2}$ $4q^{2}$ $\frac{+}{3p^{2}}$ $3q^{2}$ pq Step 2: $$3p^{2} \quad 3q^{2} \quad pq$$ $$p^{2} \quad 2pq$$ $$+ \quad -$$ $$4p^{2} \quad 3q^{2} \quad pq$$ Step 2: $$3xy \quad 4x^2 \quad 4$$ $$15xy \quad x^2 \quad 2$$ $$12xy \quad 5x^2 \quad 2$$ 12. Required other expression x^2 y^2 3y 5 (on subtraction) $\frac{2y^2 \quad 2x \quad y \quad 10}{- \quad - \quad + \quad + \quad }$ $\frac{- \quad - \quad + \quad + \quad }{x^2 \quad 3y^2 \quad 2x \quad 4y \quad 5}$ ### Exercise 6.3 1. Given x = 2, y = 1 (c) $$4x^2$$ 5 4 $(2)^2$ 5 4 4 5=16-5=11 (d) $$y^2 + 2y + (1)^2 + 2 + 1 + 2 + 1$$ (e) $$x^2$$ y^2 xy $(2)^2$ 1^2 2 1 4 1 2=3 (f) $$x^2$$ y^2 $(2)^2$ $(1)^2$ 4 1 3 **2.** Given a = 2, b = 2, c = 1 (b) $$a^3$$ b^3 c^3 $(2)^3$ $(2)^3$ $(1)^3$ 8 8 1 1 (c) $$a^2b$$ ab^2 (2)² (2) 2 (2)² 4 (2) 2 4 8 8 0 (e) $$a^2b$$ b^2c c^2a $(2)^2$ (2) $(2)^2$ 1 $(1)^2$ 2 8 4 2 8 6 2 (f) $$a^2b$$ a^2c $2a^2$ $(2)^2$ (2) $(2)^2$ 1 $2(2)^2$ 4 (2) 4 1 2 4 (g) $$ab^2c$$ a^2bc abc^2 (2) $(2)^2$ 1 $(2)^2$ (2) 1 2 (2) $(1)^2$ 2 4 1 4 2 1 4 8 8 4 12 (h) $$a^2$$ b^2 c^2 2 ab 2 bc 2 ac (2) 2 (2) 2 (1) 2 2 (2) (i) $$a^3$$ b^3 c^3 $3abc$ $(2)^3$ $(2)^3$ $(1)^3$ 3 2 (2) 1 8 8 1 12 13 3. (a) $$4p$$ q $6p$ q $(4p$ $6p)$ $(q$ $q)$ $2p$ $2q$ 2 (1) 2 1 [Put p (b) $$7p^2 q^2 8p^2 q^2 (7p^2 8p^2) (q^2 q^2)$$ [Put p 1] $p^2 (1)^2 (1) 1$ (c) $$10pq$$ $2qr$ $6pr$ $4pq$ $(10pq$ $4pq)$ $2qr$ $6pr$ $(Put p$ $1,q$ $1,r$ $2)$ 14 (1) 1 2 1 2 6 (1) 2 14 4 12 18 12 6 (d) $$pqr \ 6pqr \ 7q^2 \ 4p^2$$ $(pqr \ 6pqr) \ 7q^2 \ 4p^2$ $(5pqr) \ 7q^2 \ 4p^2$ ``` \begin{bmatrix} 5 & (1) & 1 & 2 \end{bmatrix} 7(1)^2 4(1)^2 [Put p = 1, q = 1, r = 2] (e) 5p^2 6q 7r^2 6p^2 5q^2 2r^2 (5p^2 6p^2) (6q^2 5q^2) (7r^2 2r^2) 11p^2 \quad (11q^2) \quad (5r)^2 11. (1)^2 11. (1)^2 5. (2)^2 [Put p 1, q 1, r 2] 11 11 20 20 (f) 5(p \ q) \ 3p \ 2q \ 5p \ 5q \ 3p \ 2q \ (5p \ 3p) \ (5q \ 2q) 2p 3q [Put p = 1, q = 1] 2 (1) 3 1 2 3 1 4. (a) x + 7 + 4(x + 5) + x + 7 + 4x + 20 + 5x + 7 + 20 + 5x + 13 Put x = 2 in (5x = 13), we have 5x 13 5 2 13 10 13 3 (b) 3(x \ 2) \ 5x \ 7 \ 3x \ 6 \ 5x \ 7 (3x 5x) (6 7) 8x 1 Put x = 2 in (8x = 1), we have 8x 1 8 2 1 16 1 15 (c) 6x 5(x 2) 6x 5x 10 11x 10 Put x = 2 in (11x = 10), we have 11x 10 11 2 10 22 10 12 (d) 4(2x \ 1) \ 3x \ 11 \ 8x \ 4 \ 3x \ 11 \ (8x \ 3x) \ (11 \ 4) \ 11x \ 7 Put x = 2 in (11x = 7), we have 11x 7 11 2 7 22 7 29 5. (i) Put z = 10 in z^3. 3(z = 10), we have z^3 3(z 10) 10³ 3(10 10) 1000 3 0 1000 10 \text{ in } (p^2 \ 2p \ 100), we have (ii) Put p p^2 2p 100 (10)² 2 (10) 100 100 20 100 20 MCO's 1. (b) 2. (c) 3. (b) 4. (a) 5. (c) 6. (b) 7. (c) 8. (c) 9. (a) 10. (d). ``` # Commercial Mathematics ### Exercise 7.1 - 1. (a) 60 minutes to 3 hours 1 hours to 3 hours Ratio 1:3 - (b) 32 cm to 4 m - 32 cm to 400 cm Ratio 2:25 (c) 800 ml to 4.8 litres 800 ml to 480 ml Ratio 1:6 2. Total number of 90 > Social Science 10; Hindi 18 > > English 27 Science 90 (10 18 27) 35 - (a) Ratio of number of social science books to science books 10:35 2:7 - Ratio of number of Hindi to English book 18:27 2:3 - Ratio of Number of Social Science to total number of book 10:90 1:9 - 15 χ **3.** (a) 75 300 - 6 - 300 15 75 x_1 300 15 60 32 6 4 x_1 75 And, 300 x_2 60 x_2 75 300 75 300 375 60 $6x_2$ And 48 x_3 - 48 3 $2x_3$ - 5:4 4. Given Ratio in between A and B - ₹ 900 $\frac{5}{9}$ ₹ 500 A's share - ₹ 900 B's share ₹ 400 - Given Ratio in between A, B and C 3:4:5 - ₹ 324 $\frac{3}{12}$ ₹ 81 A's share - ₹ 324 $\frac{4}{12}$ ₹ 324 $\frac{5}{12}$ B's share ₹108 - ₹135 C's share - Total number of animals 95 - Number of houses - Number of rabbits 20. 95 (5 20) 70 Number of hens 5, - (a) Ratio in number of horses to the total number of the animals 5:95 1:19 - (b) Ratio in number of rabbits to number of horses 20:5 4:1 - (c) Ratio in number of hens to number of horses 70:5 14:1 - (d) Ratio in number of hens to number of rabbits 70:20 7:2 - 7. A:B2:3 ...(1) $$B:C$$ 4:5 ...(2) Multiply (1) by (4) and (2) by (3), we get (b) A:C 8:15 $$\begin{array}{ccc} \frac{a}{b} & \frac{4}{5} \\ 5 & \frac{4b}{5} & b \\ \hline 5 & \frac{4b}{5} & b \end{array}$$ $$a = \frac{4b}{5}$$ $$\frac{5 \quad \frac{4b}{5}}{5 \quad 4b}$$ $$\frac{4b}{4b}$$ $\frac{b}{b}$ $\frac{5b}{3b}$ $\frac{5}{3}$ **9.** $$x:y$$ 1:2 $$\frac{x}{y} = \frac{1}{2}$$ $x = \frac{y}{2}$ $$x = \frac{y}{2}$$ $$\frac{2x}{y} \frac{y}{x} = \frac{2}{\frac{y}{z}} \frac{y}{y} = \frac{y}{\frac{2y}{z}} = \frac{y}{\frac{2y}{z}} = \frac{y}{\frac{2y}{z}} = \frac{2(y-y)}{\frac{2y}{z}} = \frac{2(y-y)}{\frac{2y}{z}} = \frac{2}{\frac{2y}{z}} = \frac{4y}{y} = \frac{4}{1} = 4:1$$ $$\frac{2x}{y} \frac{3y}{1} = \frac{1}{1} = \frac{2}{1} =$$ **10.** $$\frac{2x + 3y}{x + 8y} = \frac{1}{z}$$ $$2(2x + 3y) + 1(x + 8y)$$ [cross multiplication] $$\frac{5m}{n}\frac{n}{m} = \frac{9}{7}$$ 2n 12. Let one number $$4x$$ second number $7x$ 44m According to Question; $$\frac{4x}{7x} = \frac{3}{3} = \frac{5}{8}$$ $(4x = 3)8 = 5(7x = 3)$ $22x = 24 = 35x = 15$ $9 = 3x$ $x = 9 = 3 = 3$ The numbers are 12 3:4 is greater ratio of 2:3. ### **14.** Perimeter of the triangle Ratio fo triangle sides 2:3:4 one side of triangle 54 $$\frac{2}{9}$$ 12 cm two side of triangle 54 $\frac{3}{2}$ 18 cm 12 Three side of triangle 24 cm ### Exercise 7.2 ### **1.** (a) 30, 35, 40, 45 It is not proportion. The production of extremes product of means. It is proportion.; ### (c) 14, 18, 21, 27 The production of extremes Product of means It is production. ### **2.** (a) 4, 6, 6, 9 The production of extremes Product of means. It is proportion. The product of extremes Product of means It is not proportion. ### (c) 4, 12, 36 11, 12, 12, 36 The product of extremes Product of means. It is proportion. (d) 3, 9, 27 3, 9, 9, 27 The product of extremes Product of means It is proportion **3.** (a) 21:38 x:52 21 52 28*x* [Product of extremes Product of means] $$x = \frac{21}{28} = 39$$ 11:*x* 12:72 (b) > 11 72 12x[Product of extremes Product of means] $$x = \frac{11}{12}$$ 66 x:45 24:60(c) [Product of extremes Product of means] **4.** (a) Let the fourth proportion to 8, 12 and 16 be x: 8:12 16:*x* 8*x* 12 16 [Product of extremes Product of means] (b) Let the fourth proportion to 4, 7 and 8 be x 4:7 8:*x* 4*x* 7 8 [Product of extremes Product of means] $x = \frac{7 - 8}{4} \quad 14$ (c) Let the fourth proportion to 1, 6 and 10 be x $1:6 \quad 10:x$ 1 x 6 10 [Product of extremes Product of means] x 60 (d) Let the fourth proportion to 30, 40 and 45 be x 30:40 45:x [Product of extremes Product of means] **5.** (a) Let third proportion to 9 and 4 be x (b) Let third proportion to 2 and 8 be x 2:x::x:4 $2 \ 8 \ x^2$ $$16 x^2$$ $x \sqrt{16} \ 4$ - (c) Let third proportion to 25 and 4 be x (d) Let third proportion to 9 and 16 be x 9 16 x^2 144 $$x^2$$ $x \sqrt{144}$ 12 25:x::x:4 $25 \ 4 \ x^2$ 9:x::x:4 9 4 x^2 36 x $x \sqrt{36} = 6$ $100 x^2$ $x = \sqrt{100} = 10$ ``` Than; number is (1 \ x); (3 \ x); (1 \ x):(3 \ x)::(10 \ x):(18 \ x) (1 \ x)(18 \ x) (10 \ x)(3 \ x) 18 \ x \ 18x \ x^2 30 10x 3x x^2 13x x^2 18 19x x^2 30 19x \ 13x 30 18 6x 12 2 7. Bulbs in working conation 12 Defective bulbs Ratio of working and defective bulbs 12:3 4:1 Defective bulbs 8. Scale of the map 1 cm 5000000 Actual distance between two towns 2 cm scale of the map 2 cm 2 5000000 10,00,00,000 cm 100 km 9. Ratio of present ages of two girls 3:5 Let age of one girl 3x Let age of one second line 5x Five years ago, age of one girl 3x = 5 second girl 5x 5 Ratio 3x \ 5:5x \ 5 According to question Ration of her age in 5 year ago 1:2 3x \ 5:5x \ 5 1:2 1 5x 5 2 2(3x - 5) (5x \ 5) (cross multiplication) 6x 10 5x 5 6x 5x 10 5 5 Present age of one girl 3 5 15 year Present age of second girl 5 5 25 year 10. Distance covered by train 180 km time taken 3 hours speed of train 3 hours \therefore Speed = \frac{\text{Distance}}{\text{Distance}} 180 speed of train 60 km/hour Distance covered by train 240 km Speed of train 60 km/hour \therefore \text{ Time} = \frac{\text{Distance}}{\text{Speed}} time taken by train 6 hour 60 ``` **6.** Let *x* number be added ### Exercise 7.3 Cost of 1 book $$\stackrel{?}{\underset{12}{\overline{}}} \frac{606}{12} \stackrel{?}{\underset{12}{\overline{}}} 50.5$$ we can bought for ₹ 1010 $$\frac{1010 \text{ } 12}{606}$$ 20 Cost of 1 metre o cloth $$\stackrel{?}{\stackrel{?}{=}} \frac{1800}{30}$$ Cost of 35 metre of cloth $$\stackrel{?}{\stackrel{?}{=}} \frac{1800}{30}$$ 35 $\stackrel{?}{\stackrel{?}{=}} 2100$ Selling price of doll ₹ 300 than tax on it ₹ $$\frac{62.50}{625}$$ 300 ₹ 30 Cost of 1 litre milk $$\stackrel{?}{=} \frac{112.50}{5}$$ Cost of 2 litre milk $$\frac{112.50}{5}$$ 2 ₹ 45 1 chocolate are packed in $$\frac{15}{900}$$ 1500 chocolate are packed in $$\frac{15}{900}$$ 1500 25 box # 6. Capacity of water tank 1.2 kilolitre or 1200 liter 1 litre store in $$\frac{1}{1200}$$ water tank 180000 litre store in $$\frac{1}{1200}$$ 180000 150 water tank 1 months income of a labourer $$\stackrel{?}{=} \frac{24000}{4}$$ 12 month income of a labourer $$₹ \frac{24000}{4}$$ 12 ₹ 72000 Speed $$\frac{4800}{8}$$ 600 km/hour Speed $\frac{\text{Distance}}{\text{Time taken}}$ Time taken $$\frac{1800}{600}$$ 3 hour Time take $\frac{\text{Distance}}{\text{Speed}}$ **5.** (b) ### MCO's ### Exercise 8.1 - Half of y is $\frac{y}{2}$ (a) - Seven times m is 7 m. (b) - (c) The equation is n = 10 = 25 - (d) Difference of d and 11 is d - (e) 5 times b is 5b - 5 times x is 5x(f) - (g) one-sixth of C is more than 8 The equation is $\frac{C}{6}$ 8 2 or, $\frac{C}{\epsilon}$ is greater than 8 by 2 - (h) one-fourth of *P* is $\frac{P}{A}$ - (i) The equation of t and 7 is $\frac{t}{7}$ - 13 is added in it, so it will be $\frac{t}{7}$ - 8 times e is 8e (i) - (k) Total of a number x and 2 is x = 29 less from the total is (x 2) - **2.** (a) 5 subtract from y gives 12 - (c) Sum of x and 3 is 14 - (e) Negative quotient of P and 7 is 7 - (g) 3 less than quotient of b and 7 is 8 - (i) 7 subtracted from one-fifth of y is 8 - (k) Three-fourth of a number P is 15 - 3. (a) Let the number of boys in the class x Then, then number of girls are $\frac{2}{5}$ of $x = \frac{2x}{5}$ Total students in the class = 35 The equation is $x = \frac{2x}{5}$ 35, (where x is number of boys) (b) Let the number be x and its half is $\frac{x}{2}$. The equation is $x = \frac{x}{2}$ 33. - (c) Let Two consecutive numbers be x and (x 1). Their sum is x (x 1). The equation is x (x 1) 51, or 2x 51 - (d) Let the breadth of a rectangle is (x) m. Then, the length of the rectangle is (2x - 6) m. The perimeter of rectangle = 240 m - The equation is $\frac{y}{2}$ 33 - The equation is 7m 84 - The equation is d 11 - The equation is 5b - The equation is 5x - The equation is $\frac{C}{6}$ 8 2 - The equation is $\frac{P}{4}$ 4 40 - The equation is $\frac{l}{7}$ 13 20 - The equation is 8e 8 - The equation is $(x \ 2) \ 9 \ 53$ - (b) Quotient of q and 9 is 9 - (d) Difference between 5 and y is 3 - (f) 14 less than 3 times x results in 4 - (h) 11 is added to 6 times x given 35 - (i) 16 times *m* is 96 The equation is x = (2x - 6) = x = (2x - 6) = 2402x = 2(2x - 6) = 240 or, 2x + 4x + 12 + 240 or, 6x 12 240 (e) Let B C x. Then A 3 B 3x or, $A = 3 \quad C \quad 3x$ The equation is A = B = C = 180i.e., $A = \frac{A}{3} = \frac{A}{3} = 180$ $[:: A \quad B \quad 3 \quad C]$ (f) Let Viabhav's Age is x years. Then, Vaibhav's father's age is (3x - 4) years but Vaibhav's father is 43 years. The equation is (3x - 4) - 43, where x is Vaibhav's age. (g) Let Gautam scored the runs x Then Rahul scored the runs 2x The sum of their runs (2x x 5) [::century 100 runs, double century 100 100 200 runs] (h) Let Isha is x ears old. Then, Saurabhs' age x 6 Sum of their ages is x (x 6). The equation is $x = \begin{pmatrix} x & 6 \end{pmatrix} = 24$ 2x = 6 = 24. or, or, ### **Exercise 8.2** **1.** 2*b* 5 17, *b* 6 Substituting b 6 in the equation L.H.S. 2 6 5 12 5 17 R.H.S. b 6 is a solution of the given equation. **2.** 8 7*x* 20, *n* 2 Substituting n 2 in the equation L.H.S. 8 7n 7 7 2 8 14 6 R.H.S. 20 L.H.S. R.H.S. n 2 is not a solution of the given equation. **3.** 9*q* 3 15, *q* 2 Substituting q 2 in the equation L.H.S. 9 2 3 18 3 15 R.H.S. q 2 is a solution of the given equation. **4.** $\frac{a}{20}$ **4**, a 60 Substituting a 60 in the equation L.H.S. $$\frac{60}{20}$$ and, R.H.S. 4 Since L.H.S. R.H.S. a 60 is not a solution of the given equation. 5. $\frac{y}{2}$ 4 0, y 8 Substituting y = 8 in the equation L.H.S. $$\frac{8}{2}$$ 4 4 4 0 R.H.S. y 8 is a solution of the given equation. **6.** 4*S* 80, *s* 76 Substituting s 76 in the equation L.H.S. 4 76 304 R.H.S. s 76 is not a solution of the given equation. **7.** 13*b* 169, *b* 13 Substituting b 13 in the equation L.H.S. 13 13 169 = R.H.S. b 13 is a solution of the given equation. **8.** 11 23*x* 11, *x* 1 Substituting x 1 in the equation L.H.S. 11 23 1 11 23 34 R.H.S. x 1 is not a solution of the given equation. **9.** 2*x* 1 *x* 3, *x* 1 Substituting x 1 in the equation L.H.S. 2 1 1 2 1 3 R.H.S. 1 3 4 Since L.H.S. R.H.S. x 1 is not a solution of the given equation. ### Exercise 8.3 1. 8*z* 20 52 We have, $$8z$$ 20 52 $8z$ 52 20 (by transposition) $8z$ 32 z $\frac{32}{8}$ (by transposition) Hence, z = 4 is a solution. **Check:** L.H.S. 8z 20 8 4 20 52= R.H.S. 2. $\frac{a}{13}$ 6 5 We have, $$\frac{a}{13}$$ 6 5 $$\frac{a}{13}$$ 5 6 (by transposition) $$\frac{a}{13}$$ 1 $$a$$ 1 13 (by transposition) $$a$$ 13 **Check:** L.H.S. $$\frac{a}{13}$$ 6 $\frac{13}{13}$ 6 1 6 6 1 5 = R.H.S. 3. $$\frac{5}{2}y$$ 60 We have, $$\frac{5y}{2}$$ 60 $y = 60 - \frac{5}{2}$ (By transposition) $y = \frac{12}{60} - \frac{2}{5}$ $y = 24$ Hence, y 24 is a solution of the given equation. **Check:** L.H.S. $\frac{5}{2}y + \frac{5}{2} = \frac{12}{24} = 5 + 12 = 60 = \text{R.H.S.}$ We have, $$2(y 3) 7 2y 6 7 2y 7 6 (by transposition) 2y 13 y $\frac{13}{12}$ (by transposition) $$y \frac{13}{12}$$$$ Hence, $y = \frac{13}{2}$ is a solution of the given equation. $$7 = R.H.S.$$ Hence, t 3 is a solution of the given equation. **Check:** L.H.S. 12t 1 12 3 1 36 1 37 R.H.S. **6.** $$\frac{x}{4}$$ 9 7 We have $$\frac{x}{4} = 9 = 7$$ $\frac{x}{4} = 7 = 9$ (By transposition) $$\frac{x}{4}$$ 2 x 2 4 (By transposition) x 8 Hence, x 8 is a solution of the given equation. **Check:** L.H.S. $$\frac{x}{4}$$ 9 $\frac{8}{4}$ 9 2 9 7= R.H.S. 7. $$2m \quad \frac{5}{2} \quad \frac{37}{2}$$ We have, $$2m \quad \frac{37}{2} \quad \frac{5}{2}$$ (by transposition) $$2m \quad \frac{37}{2} \quad \frac{5}{2} \quad 16$$ $$m \quad \frac{16}{2}$$ (By transposition) Hence, m 8 is a solution of the given equation. Check: L.H.S. $$2m = \frac{5}{2} = 2 = 8 = \frac{5}{2}$$ $16 = \frac{5}{2} = \frac{32}{2} = \frac{37}{2} = \text{R.H.S.}$ 8. $$3(4 x) 2x 5$$ We have, $$3(4 \ x) \ 2x \ 5$$ $12 \ 3x \ 2x \ 5$ $3x \ 2x \ 5$ (by transposition) $3x \ 2x \ 17$ $3x \ 2x \ 17$ (by transposition) $x \ 17$ Hence, x 17 is a solution of the given equation. Check: L.H.S. $$3(4 \ x)$$ 12 3x 12 3 17 12 51 39 R.H.S. $2x$ 5 2 17 5 34 5 39 L.H.S. = R.H.S. **9.** $$4x \quad \frac{1}{3} \quad \frac{1}{5} \quad 3x$$ We have, $$4x \quad \frac{1}{3} \quad \frac{1}{5} \quad 3x$$ $$4x \quad \frac{1}{3} \quad 3x \quad \frac{1}{5} \qquad \text{(by transposition)}$$ $$x \quad \frac{1}{3} \quad \frac{1}{5} \qquad x \quad \frac{1}{5} \quad \frac{1}{3} \qquad \text{(by transposition)}$$ $$x \quad \frac{3}{15} \quad \frac{1}{3} \qquad x \quad \frac{8}{15}$$ Hence, $x = \frac{8}{15}$ is a solution of the given equation. Hence, $x = \frac{8}{15}$ is a solution of the given equation. Check: L.H.S. $$4x \frac{1}{3} 4 \frac{8}{15} \frac{1}{3} \frac{32}{15} \frac{1}{3} \frac{32}{15} \frac{5}{15} \frac{27}{15} \frac{9}{5}$$ R.H.S. $\frac{1}{5} 3x \frac{1}{5} \frac{1}{3} \frac{8}{15} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{8}{5} \frac{9}{5}$ $$L.H.S. = R.H.S$$ 26x 7 19 26x 26 (by transposition) (by transposition) Hence, x 1 is a solution of the given equation. L.H.S. $4(5x \ 4) \ 3(2x \ 1)$ Check: $4(5 \ 1 \ 4) \ 3(2 \ 1 \ 1)$ $4(5 \ 4) \ 3(2 \ 1 \ 1)$ > 4 1 3 1 4 3 7 = R.H.S. $7x \quad 2x \quad 4 \quad 20 \quad 2x \quad 5$ 9*x* 4 25 2*x* 9x 2x 4 25(by transposition) (by transposition) (by transposition) Hence, $x = \frac{21}{11}$ is a solution of the given equation. **Check:** L.H.S. $$7x - 2(x - 2)$$ $\frac{147 \quad 42 \quad 44}{11} \quad \frac{233}{11}$ R.H.S. 20 (2x 5) 20 2 $\frac{21}{11}$ 5 20 $\frac{42}{11}$ 5 $25 \quad \frac{42}{11} \quad \frac{275}{11} \quad \frac{42}{11} \quad \frac{233}{11}$ L.H.S. = R.H.S. 12. $$\frac{y}{5}$$ $\frac{y}{6}$ $\frac{1}{30}$ $\frac{6y}{30} = \frac{5y}{30}$ [LCMof (5,6) 30] $$\frac{y}{30} = \frac{1}{30}$$ $$y = \frac{1}{30} = 30$$ (by transposition) $$y = 1$$ **13.** 23 4*x* 25 4x or, $$23$$ 25 $4x$ $4x$ (by transposition) or, $$23 25 8x$$ (by transposition) or, $$8x 48$$ or, $$x = \frac{48}{8}$$ or, $x = 6$ Hence, x 6 is a solution. (by transposition) **14.** $$\frac{2x}{3}$$ $\frac{x}{2}$ 30 or, $$\frac{4x - 3x}{6} = 30$$ [LCM of (3, 2) = 6] $$\frac{x}{6} = 30$$ x 30 6 (by transposition) x 180 Hence, x 180 is a solution. Check: L.H.S. $$\frac{2x}{3} = \frac{x}{2} = \frac{2 + 80}{2} = \frac{180}{2}$$ $$120 = 80 = 120$$ = R.H.S. We have, $$0 \ 18 \ 9(m \ 2)$$ $0 \ 18 \ 9m \ 18$ $0 \ 9m$ $\frac{0}{9} \ m$ (by transposition) or, $m \ 0$ Hence, m 0 is a solution of this equation. **Check:** R.H.S. $$18 \ 9(m^2) \ 18 \ 9(0 \ 2)$$ 18 9 0 9 2 18 18 0 L.H.S. We have, $34 \quad 5(n \quad 1) \quad 4$ 34 $$5n$$ 5 4 39 $5n$ 4 $5n$ 4 39 (by transposition) $5n$ 35 n $\frac{35}{(5)}$ (by transposition) n 7s Hence, n 7 is a solution. **Check:** L.H.S. 34 $5(n \ 1)$ 34 $5(7 \ 1)$ 34 5 6 34 3 4 = R.H.S. 17. $$\frac{x}{4}$$ $\frac{x}{5}$ 1 We have, $\frac{x}{4} = \frac{x}{5} = 1$ $\frac{x}{4} = \frac{x}{5} = 1$ $\frac{5x}{4} = \frac{4x}{5} = 1$ $\frac{5x}{20} = 1$ x = 1 = 20(by transposition) Hence, x 20 is a solution. Check: L.H.S. $$\frac{x}{4} = \frac{20}{4} = 5$$ R.H.S. $\frac{x}{5} = 1$ $\frac{20}{5} = 1 = 4 = 1 = 5$ L.H.S. R.H.S. **18.** $$\frac{7b}{8}$$ 15 1 We have, $$\frac{7b}{8}$$ 15 1 (by transposition) $\frac{7b}{8}$ 14 (by transposition) $\frac{7b}{8}$ 14 (by transposition) $$b = \frac{14 \cdot 18}{1}$$ (by transposition) *b* 16 Hence, b 16 is a solution. Check: L.H.S. $$\frac{7b}{8}$$ 15 $\frac{7}{8}$ 15 7 2 15 14 15 1= R.H.S. **19.** $5(x \ 3)$ 45 We have, $$5(x \quad 3) \quad 45$$ $$5x \quad 15 \quad 45$$ $$5x \quad 15 \quad 45$$ $$5x \quad 30$$ $$x \quad \frac{30}{5}$$ (by transposition) $$x \quad 6$$ Hence, x 6 is a solution. **Check:** L.H.S. $5(x \ 3) \ 5(6 \ 3) \ 5(9) \ 45 = R.H.S.$ **20.** 3*P* 2(2*P* 5) 2(*P* 3) 8 Hence, P 4 is a solution. ### Exercise 8.4 1. Let one of the numbers be x. Then, the second number will be (x 1). Then, $$x (x 1) 203$$ $2x 1 203$ $2x 203 1$ $2x 202$ $x 101$ one number = 101 and the second number 101 1 102 **2.** Let one of the odd numbers be x Then, the next consecutive odd number $$x = 2$$ Sum of 2 consecutive odd number = 136 or, $$x (x 2) 136$$ or, $2x 2 136$ or, $2x (136 2) 134$ or, $x \frac{134}{2} 67$ $x 67$ Hence, one odd number = 67 and the second odd number 67 2 69 3. Let one the even number be x. Then, the next consecutive even number x = 2. Sum of 2 consecutive even number 502 Hence, one even number = 250 and the second even number 250 2 252 **4.** Let the 3 consecutive integers be x, x = 1, x = 2 Sum of all the inegers is x (x 1) (x 2). or, $$x = \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} x & 2 \end{pmatrix} = \begin{pmatrix} x & 2 \end{pmatrix}$$ or, $3x & 3 & 24$ or, $3x & 24 & 3 & 21$ or, $x = \begin{pmatrix} \frac{21}{3} & 7 & x & 7 \end{pmatrix}$ First integer = 7 Second 7 1 8 and the third integer 7 2 9 **5.** Let the number be x. 35 added to x gives x 35. So, the following equation is obtained. Hence, the number is 182. - **Check:** 182 35 217 - **6.** Let the number be x. twice the number is 2x. 7 added to 2x gives 59, so we obtain the following equation. Hence, the required number is 26. **Check:** 2 26 7 52 7 59 7. Let the number be x. 5 times the number 5x, Subtracting 3 from it, we get 5x 3. so, the following equation is obtained Hence, the required number is 9. Check: Do yourself as above. **8.** Let the number be x. Multiplication by $\frac{5}{6}$ is $\frac{5x}{6}$, So we obtain the following equation. Hence, the required number is 72. 9. Let the number be x. Two-third of the number is $\frac{2}{3}x$. one-third of the number is $\frac{x}{3}$. So, the equation is Hence, the required number is 9. **10.** Let the number be x. Its three-fourth is $\frac{3}{4}x$. So, the equation is $$x = \frac{3x}{4} = 91$$ $$\frac{4x = 3x}{4} = 91$$ $$7x = 91 = 4$$ $$x = \frac{13}{91} = 4$$ $$x = \frac{13}{7} = 13 = 4$$ x 52 Hence, the required number is 52. 11. Let the number of boys in the class be x. Then, the number of girls $$\frac{5}{6}$$ of the number of boys $\frac{5}{6}$ x $\frac{5x}{6}$ Total number of students 44 Now, the number of girls + The number of boys = Total number of students $$\frac{3x}{6} \times 44 \qquad \frac{5x}{6} \times 44 \\ \frac{11x}{6} \times 44 \qquad x = \frac{44}{11} \times 6$$ x 24 Hence, the number of girls in the class $\frac{5}{6}$ $\frac{4}{24}$ 20 12. Let the number be x. half of the number is $\frac{x}{2}$. $$x = \frac{x}{2}$$ 45 $$\frac{2x}{2} \quad x$$ $$\frac{3x}{2} \quad 45$$ $$3x \quad 45 \quad 2$$ $$x \quad \frac{45}{3} \quad 2 \quad 30$$ $$x \quad 30$$ The number = 30 13. Let Sahil's age be x years. Then his mother's age is 5x. Sum of their ages is (x - 5x) years. $$\begin{array}{ccccc} x & 5x & 48 \\ 6x & 48 & 8 \\ x & \frac{48}{6} & 8 \\ x & 8 & 8 \end{array}$$ Hence, Sahil age = 8 years and is mother's age 5 8 40 years **14.** Let Mayank's present age x years Then, after 15 years, Mayank's age (x 15) years Manayk's present age = 5 years **15.** Let Isha's brother age be *x* years. Then, Ishas's age (x 5) years. After 4 years, Isha's brother age will be (x + 4) years Ratio of both age 2:3 and Isha's age will be $$(x 5) 4 (x 1)$$ years $$\frac{(x 5) 4}{x 4} \frac{2}{3} \frac{x 1}{x 4} \frac{1}{3}$$ $$3(x 1) 2(x 4)$$ $$3x 3 2x 8$$ $$3x 2x 8 3$$ x 11 Hence, Isha's brother age x 11 years and Isha's age (x 5) (11 5) 6 years **16.** Let breadth of rectangle x m. Then length of rectangle (4x - 3) m Breadth $x = 10 \,\mathrm{m}$ Length $(4x \ 3) \ 4 \ 10 \ 3 \ 40 \ 3 \ 37 \,\mathrm{m}$ 17. Let Yuvraj scored x runs and Gautam scored 2x Together, their run fell five short of a double century (100 100 5) 195 $$\begin{array}{cccc} x & 2x & 195 \\ 3x & 195 \\ x & \frac{65}{3} \\ \end{array}$$ *x* 65 Yuvraj scored x 65 runs Gautam scored 2x 2 65 130 runs **18.** Let angle are $A \times x$, $B \times 2x$, $C \times 3x$ We know that the sum of 3 angles of a triangle is 180°. The equation is. $$A B C 180$$ i.e., $x 2x 3x 180$ $6x 180$ 30 $$\begin{array}{c} x & 180 \\ 30 \\ 180 \\ \hline 6 \\ 1 \end{array}$$ $$x & 30$$ 90 Then, vertex angle A = 3x The sum of 3 angles of a triangle is 180°. C = 3x = 3 = 30 i.e., $$A = B = C = 180$$ $3x = x = x = 180$ $5x = 180$ $x = \frac{180}{5} = 36$ measure of $\begin{array}{ccc} B & x & 36 \\ measure of & C & x & 36 \end{array}$ measure of A = 3x = 3 = 36 = 108 **20.** Let Garima's age be x years Then her mother's age 3x Hence, the equation is, x = 3x = 72 Hence, Garima's age = 18 years and mother age 3 18 54 years **21.** Let the number of 2-rupee coins be x the number of 1-rupee coins value of one-rupee coin = ₹ 2 value of x 2-rupee coin = \mathbb{Z} 2x value of one 1-rupee coin = ₹ 1 value of 3x 1-rupee coin = ₹ 3x Total value of (2-rupee + 1-rupee) coins = $\mathbf{\xi}$ (2x Hence, the equation is 2x3x₹ 50 Number of 2 rupee coins x = 10 Number of 1-rupee coins 3x + 3 + 10 + 30 22. Total number of notes = 30 Let the number of ≥ 100 notes be x The number of $\stackrel{?}{\stackrel{?}{?}}$ 500 notes be (30 x) Total rupees in the purse is ₹ 5000. The equation is x 100 (30 x) 500 5000 100x 15000 500x 5000 15000 400x 5000 10000 400x 2.5 10000 400 x = 25 Hence, the number of $\ge 100 = 25$ And the number of $\stackrel{?}{\stackrel{?}{\checkmark}} 500$ (30 25) 5 # MCO's - 1. (d) **2.** (c) - 3. (c) - (b) 4. - **5.** (a) - **b.** (c) # **Understanding Shapes** ### Exercise 9.1 1. (a) Since AOB is a straight line AOB 180 72 a 180 a 180 72 108 (b) Adjacent angles are BOC, COA, AOD, DOB (c) Vertically opposite angles are (AOC and DOB) (AOD and BOC). DOBAOC 72 (d) BOC AOD (vertically opposite angles (vertically opposite angles) AODа 108 AOD ### 2. Since *PQR* is a straight line. - (a) AQB 2x 2 40 80 - (b) BQP 2x x 20 3x 20 3 40 20 140 - (c) $AQR \quad 2x \quad x \quad 3x \quad 3 \quad 40 \quad 120$ ### 3. Since *AOB* is a straight line. - (a) AOP x 10 90 10 100 - (b) BOP x 10 90 10 80 - (c) Since 80 90 BOP is acute angle. - (d) Since 100 90. AOP is obtuse angle. - 4. (a) Linear pairs will be: (b) Vertically opposite angles are : Since ABC is a straight line # **6.** y ?, If $x = \frac{y}{2}$ Since ABC is a straight line (from the figure) $$\begin{array}{ccc} ABC & 180 \\ x & y & 180^{\circ} \\ \frac{y}{2} & y & 180 \end{array}$$ $$\therefore x = \frac{y}{2}$$ (given) $$\frac{3y}{2}$$ 180 $$y = \frac{180^{\circ} 2}{2}$$ 120 7. If $$y = 2x, x = ?, y = ?$$ Since ABC is a straight line $$ABC$$ 180 x y 180 x 2 x 180 [∴ y 2 x given] x $\frac{180}{3}$ 60 x 60 y 2 x 2 60 120 y 120 8. If $$y = 1\frac{1}{2}$$ right angle, $x = 1$ $$y = \frac{3}{2} \text{ right angle}$$ $$\frac{3}{2} = 90 = 3 = 45$$ [: 1Right angle 90] v 120 Since ABC is a straight line (from the fig.) 135 SOR - **9.** (a) PORPOQ $QOR \quad x \quad y$ - POR $QOR \quad x \quad y \quad y \quad x$ (b) - (c) QOS SOR QOR ROS (d) $$POS$$ QOR POQ POQ QOR ROS (by figure) - ROS zPOR**10.** (a) *x* POQ*QOR* y - (b) *x* Z POQQORROSPOS y - (c) y ROS QOS QOR - PORQOR(d) *x* $Z \quad Z \quad X$ POQy 11. If $$x = \frac{1}{3}$$ right angle $\frac{1}{3} = 90 = 30$ $$y = \frac{2}{3}$$ right angle $\frac{2}{3} = 90 = 2 = 30 = 60$ $$z = \frac{1}{2}$$ right angle $\frac{1}{2} = 90 = 45$ **12.** If $$x = 25$$, $y = 60$, $POR = ?$ **14.** (a) If a 110, b? 360 (sum of all the small angles at a point) AOBBOA b 360 110 250 b 250 (b) If *b* 200, *a* ? > AOBBOA 360 (sum of all the angles at a point is 360°) a 200 360 360 200 160 160 (c) If $a = \frac{5}{3}$ right angle 90 5 30 150, b? a b 360 (sum of all the angles at a point is 360°) 150 210 b 360 **15.** (a) Given, x y 80, z 30 $$ABC$$ x y z 80 80 30 190 ABC 190 180. Hence, ABC is not a straight line. (b) Given, x y z $\frac{2}{3}$ right angle $$\frac{2}{3}$$ $\frac{30}{90}$ 60 Since ABC 180. Hence, ABC is a straight line. $x = \frac{2}{3}$ right angle (c) Given, $$\frac{2}{3}$$ 90 60 (given) (y 90) $$z = \frac{1}{2}$$ right angl $$\frac{1}{2} \text{ right angle}$$ $$\frac{1}{2} 90 \quad 45$$ (z 195) $$ABC$$ x y z 60 45 90 195 ABC 195 180. Hence, ABC is not a straight line. (d) $z = 1\frac{1}{2}$ right angle (given) ``` \frac{3}{2} \text{ right angle} \frac{3}{2} \begin{array}{c} 45 \\ 90 \end{array} \quad 135 (z 195) ABC y 30 30 135 195 Since ABC 195 180. Hence, ABC is not a straight line. \frac{1}{3} of 90° 90 16. (a) (Sum of two angles is 90°) 90 30 90 а 90 30 60 а of 80^{\circ} 20 (Sum of two angles is 90°) b 20 90 a 90 20 70 а (c) \frac{1}{2} of 60° 30 (Sum of two angles is 90°) b 90 30 90 90 30 60 60 (d) \frac{2}{5} of 70 70 b 90 28 90 (Sum of two angles 90°) 90 28 a 62 17. (a) 30° (Sum of two angles is 90°) b 90 30 90 a 90 30 60 a 60 (b) 80 (Sum of two angles is 90°) b 90 90 80 a 10 (c) 15 (Sum of two angles is 90°) 90 90 a 90 15 75 15 а (d) 75 (Sum of two angles is 90°) b 90 75 90 90 75 45 15 (e) 45° (Sum of two angles is 90°) b 90 90 a 90 45 45 45 45 а (f) x 90 (Sum of two angles is 90°) b а 90 a 90 а х \chi ``` ``` (g) 35° 90 b (Sum of two angles is 90°) 35 90 a 90 35 15 55 (h) 10 \nu 90 (Sum of two angles is 90°) 90 y a 80 y (10 \ y) a 90 10 70° (a) (∵Sum of two supplement angles is 180°) b 180 a 110 180 70 а 80° (b) 180 (:: Sum of two supplement angles is 180°) a 80 180 a 180 80 100 а 195° (c) (:: Sum of two supplement angles is 180°) b 180 195 195 180 15 а (d) 135 b 180 (:: Sum of two supplement angles is 180°) 135 45 135 180 a 180 40 (e) b 180 (:: Sum of two supplement angles is 180°) 40 180 a 180 40 140 а 121 (f) (:: Sum of two supplement angles is 180°) b 180 a 121 180 a 180 121 (g) x b 180 (:: Sum of two supplement angles is 180°) а a 180 x а 20 (h) y b 180 (:: Sum of two supplement angles is 180°) a a (20 y) a 180 v 160 v (a) \frac{3}{4} of 160^{\circ} \frac{3}{4} 160 (: Sum of two angles is 180°) a b 180 a 120 180 a 180 120 60 \frac{1}{2} of 120 120 a b 180 (:: Sum of two supplement angles is 180°) a 60 180 a 180 120 60 (c) \frac{1}{3} of 150 \frac{1}{3} b 180 (:: Sum of two supplement angles is 180°) а 50 180 a 180 50 130 а (d) \frac{3}{5} of 100^{\circ} \frac{3}{5} 100 3 20 b 180 (:: Sum of two supplement angles is 180°) а 60 180 a 180 60 а ``` - **20.** Let angles be 7x, 8x - Angles are complementary 7x 8x 90 (: Sum of two complementary angles is 90°) 15x 90 $$x = \frac{90}{15} = 6$$ Thus, the angles are 7x 7 6 42 and 8x 8 6 48 **21.** Let angles be 7x, 11x(: Angles are supplementary) 7x 11x 180 ($$\because$$ Sum of two supplementary angles is 180°) 18x 180 x $\frac{180}{18}$ 10 Thus, the angles are 7x 7 10110 70 and 11x11 10 32 - $a \ 3x \ 15$, $b \ (2x \ 5)$, $x \ ?$ 22. Let b 180 (∵ Sum of two supplementary angles is 180°) 2x5 180 3x = 155x = 20180 5x 180 20 160 $x = \frac{160}{5}$ - **23.** Let A (2x 7), B (x 4)B 90 ••• A(: Sum of two complementary angles is 90°) 90 (2x x) (4 7) 90(2x 7) (x 4) $(3x \ 3) \ 90$ 3x90 3 31 χ - **24.** (a) Let both the angles be x. (:: Angles are complement) *x* 90 2x90 $x = \frac{90}{2} = 45$ 45 x - (b) Let both the angles be x(: Angles are supplementary) 2x180 $x = \frac{180}{2} = 90$ 90 х - **25.** (a) No, (b) No, a b 180 (Sum of linear pair is 180°) (c) a 90 180 a 180 90 90 - (d) a b 180 obtuse angle b 180 obtuse angle = acute angle other angle is 90° 2x **26.** Given BAD (5x30), CAD = 2x•: CAB is a straight angle CADBAD 180 180 $(5x \ 30)$ 7x30 $$\begin{array}{ccc} x & \frac{210}{7} & 3 \\ x & 30 \end{array}$$ ### Exercise 9.2 - 1. (a) 1 and 5 =Corresponding angles - (b) 4 and 7 = None - (c) 2 and 7 = Alternate interior angles - (d) 4 and 8 = Corresponding angles - (e) 1 and 8 = Alternate exterior angles - (b) (4, 5) = Alternate interior angles - (c) (1, 8) = Alternate exterior angles - (d) (2, 4) = None - **3.** (a) (1, 10) Corresponding angles - (b) (2, 8) = Alternate interior - (c) (5, 7) = None - (d) (6, 2) = Alternate exterior - (e) (4, 11) = Alternate interior - (f) (8, 10) = Alternate interior (Corresponding angles) a b a (Alternative interior angles) 80 (Alternate interior angles) b a (Vertically opposite angles) b 72 b 60 180 (Allied or conjoined angled) b 180 60 b 120 | (d) $: a$ | 110 | | (Vertically opposite angle) | |-----------|-------|-----|------------------------------| | a 11 | 0 180 | | | | | | | (Allied or conjoined angled) | | a | b 180 | | | | 110 | b 180 | | | | | b 180 | 110 | | (e) :: AOB is a straight line 70 b Now, AQB is a straight line b40 a a 105 (f) .: (g) b75 (Corresponding angles) 75 180 (straight angles) 180 (h) :: b 100 (Corresponding angles) b180 (straight line) 100 180 180 100 80 80 a (i) b 130 (Vertically opposite angle) 130 180 (Allied or conjoined angles) 180 130 а 50 ``` 5. 60 (corresponding angle) (corresponding angle) \chi 60 Z Z (vertically opposite angle) p 60 p 60 180 (straight line) 60 180 180 60 120 120 (vertically opposite angle) 120 S (corresponding angle) S 120 60 \ z \ 60 Hence, p = 60, q = 120, r = 120, s = 120. 6. AB is a straight line 100 P 180 [straight line] 180 100 80 P 80 100 ••• [vertically opp. angle] 100 P [vertically opp. angle] х 80 х 100 [corresponding angle] 100 z [vertically opp. angle] Z 100 180 [straight line] Z 100 180 \nu 180 100 80 \nu 80 120, Given 1 60 3 1 (vertically opposite angle) 3 120 1 120] 2 180 [straight line] 2 120 180 2 180 120 60 2 60 5 Similarly, 6 180 (straight line) 5 6 180 180 6 120 60 60 4 2 (vertically opposite angle) 4 60 ``` (straight line) 5 180 | 5 60 | 180 | | | | | | | |-------------------|-----|----|-----|--|--|--|--| | 5 | 180 | 60 | 120 | | | | | | 5 | 120 | | | | | | | | Now, since given, | | | | | | | | | 8 | 60 | | | | | | | | 7 8 | 180 | | | | | | | **8.** *a* 130 # **9.** *AB* || *CD* Hence In Trapezium ABCD, 55 y 180 v 180 55 125 10. $$y$$ 70 (Vertically opp. angles) z y (corresponding angles) z 70 \therefore x 115 (vertically opp. angles) w x (corresponding angles) w 115 Hence, x = 115, y = 70, w = 115 # 11. Given, $AB \mid\mid CD \mid\mid EF CD \mid\mid EF$ and CE is a transversal \therefore AB || CD and BC is a transversal | $B \mid\mid CD$ and BC is a transversal | | | | | | | | | |-------------------------------------------|-----|---------|-----|---|------|--|--|--| | | ABC | BCD [:: | BCD | y | 25] | | | | | | 75 | y 25 | | | | | | | | 75 | 25 | y | | | | | | | | | 12 | 50 | | | | | | | # 12. Given $AB \mid\mid CD$, $AC \mid\mid BD$ (i) z = 65 - 180 (sum of co-interior angles) AC || BD *x* 180 65 *x* 115 again, CD || AB y x 180 (sum of co-interior angles) y 180 x y 180 115 65 Hence, x = 115, y = 65, z = 115 (ii) $CD \mid\mid AB \text{ and } AD \text{ is a transversal}$ x 35 (Alternate s) y 40 (Alternate s) 13. Given $CE \parallel BA$, ABC 65, BAC 55 ACE BAC (Alternate angles) 55 ACD A B (exterior angle property) Now, ACD ACE ECD 120 55 ECD ECD 120 55 65 **14.** Given $AB \parallel CD$, $AE \parallel CF$ and FCG 90 \therefore AB || CD and AC is a transversal x 120 180 (co-interior angles are supplementry) *x* 180 120 60 Now, $x \ y \ 90 \ 180$ (Angles at a point on a straight line) 60 *y* 90 180 *y* 180 150 y 180 150 30 Similarly, $AE \mid\mid CF$ and AC is a transversal > z y 180 (co-interior angles are supplementary) z 30 180 z 180 30 150 15. Given, PQ || RS produce RS towards QT which meet QT at point $V.\overline{p}$ Now, $PQ \mid\mid VR$ and QT is a transversal C 110 (alternate angles) VS is a straight line b 125 180 (linear pair) b 180 125 55 Now, $\begin{array}{ccc} c & x & b \\ 110 & x & 55 \end{array}$ (exterior angle property) 120° Hence, x 55 ### **16.** Given PQ || RS In ABC, we know that (exterior angle property) *x* 75 ### **17.** *DC* || *AB* $$y z$$ (Alternative s) y 75 Again $DC \mid\mid AB \& BC$ is a transversal $$x y 180$$ (sum of co-interiors s) *x* 75 180 x 180 75 105 Hence, x = 105, y = 75, z = 75 B 50 (alternate angle) Now In ABC, 47 ### **19.** Given l || m and p || q a 75 (corresponding angles) now, $$x = a = 180$$ (linear pair) x 75 180 again, $l \mid\mid m$ and P is a transversal (sum of the interior angles on the same side of the transversal is 180°) v 180 105 ### **20.** Produce BQ which meet CD at point P. Now $AB \mid\mid CD$ and BP is a transversal a 30 (alternate angles) Now, In *POD*, (sum of all the angles of a triangle) 180 b 30 20 ### MCQ's - **1.** (b) **2.** (b) - **3.** (b) - (a) **5.** (b) **6.** (a) # Triangles and Its Properties # **Exericise 10.1** A B C 180 (sum of the angles of a triangle is $$180^{\circ}$$) 70 50 x 180 # (c) In PQR, *x* 74 (vertically opposite angle) (d)