Exercise 6.1

(b)
$$\frac{x-y}{2}$$

(c)
$$z$$
 z z^2

(d)
$$\frac{p-q}{4} \frac{pq}{4}$$

(e)
$$x^2 y^2$$

(f)
$$3(m \ n)$$
 5 $3mn$ 5

2. (a)
$$x^2 y^2 z^2$$
 trinomial

(d) y = 2z binomials

(e)
$$3x + 4 + 9y$$
 trinomials

[:: It has 3 terms]

(f)
$$15z^2$$
 2 binomials

[:: It has 2 terms]

(g)
$$a^2$$
 b^2 $9c^2$ Trinomial

[:: It has 3 terms]

[:: It has 3 terms]

3. (a) like terms
$$(9a^2, 4a^2)$$
 and $(3b^2, 2b^2)$

(b) like terms
$$(2yz, 4yz, 9yz)$$
 and $(3xy, \frac{19}{2}yx)$

(c) like terms
$$(a^2b^2c, 9a^2cb^2)$$

(d) like terms
$$(pqr, 32pqr)$$

(e) like terms
$$(x^2y, yx^2, 4x^2y)$$
 (f) like terms $(xy^2, 2xy^2)$

(f) like terms
$$(xy^2, 2xy^2)$$

4. (a) Numerical co-efficients
$$\frac{15}{2}$$
, 30,6,4

(d) Numerical co-efficients
$$-\frac{3}{5}$$
, 9, 18

5. (a)
$$10y^2z$$
 y^2 (10z)

Co-efficien of
$$y^2$$
 (10z)

(b)
$$14xy^3z \quad y^2 \quad (14xyz)$$

Co-efficient of
$$y^2$$
 ($14xyz$)

(c)
$$8y^2 y^2$$
 (8)

Co-efficient of
$$y^2$$
 8

(d)
$$\frac{5}{6}y^2x^2z$$
 $y^2 \frac{5}{6}x^2z$

Co-efficient of
$$y^2 = \frac{5}{6}x^2z$$

(e)
$$11x^2y^2z^2$$
 $y^2(11x^2z^2)$

Co-efficient of
$$y^2 = 11x^2z^2$$

(f)
$$32x^2y^4z - y^2(32x^2y^2z)$$

Co-efficient of
$$y^2$$
 $32x^2y^2z$

6. (a)
$$5y \ y(5)$$

Coefficient of
$$y$$
 5

(b)
$$2ab \ a(2b)$$

(c)
$$7xy \quad y(7x)$$

Coefficient of
$$y = 7x$$

(d)
$$3pq p(3q)$$

(e) $9xy^2 y^2(9x)$

Coefficient of
$$p$$
 3 q Coefficient of y^2 9 x

(f)
$$x^3$$
 1 x^3 (1 1)

Coefficient of
$$x^3$$
 1

(g)
$$x^2 x^2 (1)$$

Coefficient of
$$x^2$$

(h)
$$\frac{5}{7}x^2y$$
 x^2 $\frac{5}{7}y$

Coefficient of
$$xc^2 - \frac{5}{7}y$$

- 7. (a) 16xyz 4 yz
 - -16xyz 4yz
 - (c) a^2b^2c ab 9
- - Degree of 16xyz 3
 Degree of 4yz 2
 Degree of 16xyz 4yz 3
 - (b) $32y^2z 8xy 4$ Degree of $32y^2z - 2 - 1 - 3$ Degree of -8xy - 1 - 1 - 2Degree of -4 - 0Degree of $32y^2z - 8xy - 4 - 3$
 - (d) $x^2 y \quad y^2 z$ Degree of $x^2 y \quad 2 \quad 1 \quad 3$ Degree of $y^2 z \quad 2 \quad 1 \quad 3$
- 9. (a) Degree of 4 0

 Degree of $(4 y)^2$ Degree of 4 = 0
 - (c) Degree of 1 = 0Degree of 2t - 1Degree of $t^3 - 3$ Degree of $(1 - 2t - t^2 - 3t^3) - 3$
 - (e) Degree of $4x^3$ 3

 Degree of $3x^2$ 2

 Degree of 5x 1

 Degree of 6 0

 Degree of $(4x^2 3x^2 5x 6)$ 3
 - (g) Same as (f)
 - (h) Degree of $4x^3$ 3

 Degree of $7x^2y$ 2 1 3

 Degree of $5xy^2$ 1 2 3

 Degree of 2 0

 Degree of $(x^3 7x^2y 5xy^2 2)$ 3

(:: x.y.z 1 1 1 3)

- (c) a^2b^2c ab 9

 Degree of a^2b^2c 2 2 1 5

 Degree of ab 1 1 2

 Degree of 9 0

 Degree of a^2b^2c ab 9 5
- Degree of $x^2 y$ $y^2 z$ 3
 - (b) Degree of 4 = 0Degree of $y^3 = 3$ Degree of $(4 - y^3) = 3$
 - (d) Degree of x^2 2
 Degree of xy 1 1 2
 Degree of $(x^2 xy)$ 2
 - (f) Degree of x^2y 2 1 3 Degree of xy^2 1 2 3 Degree of 7xy 1 1 2 Degree of 3 0 Degree of $(x^2y + xy^2 + 7xy + 3)$ 3
 - (i) Degree of xy^2 1 2 3 Degree of $4x^2y$ 2 1 3 Degree of $7x^2y$ 2 1 3 Degree of $3xy^2$ 1 2 3 Degree of 3 = 3Degree of
 - $(xv^2 + 4x^2v + 7x^2v + 3xv^2 + 3) = 3$

Exercise 6.2

(c)
$$5y^3$$
 $26y^3$ $10y^3$ ($3y^3$) $41y^3$ $3y^3$ $38y^3$

(e)
$$10ab^2c$$
 (ab^2c) $15ab^2c$ ab^2c $10ab^2c$ ab^2c $15ab^2c$ ab^2c $5ab^2c$

(b)
$$3x^2$$
 ($10x^2$) $4x^2$ $3x^2$ $10x^2$ $4x^2$ $7x^2$ $10x^2$ $3x^2$

(f)
$$8x^2y$$
 ($11x^2y$) ($8x^2y$) $8x^2y$ $11x^2y$ $8x^2y$ $11x^2y$

(g)
$$4x^2y$$
 ($3xy^2$) ($5xy^2$) $5x^2y$ $4x^2y$ $3xy^2$ $5xy^2$ $5x^2y$ $9x^2y$ $8xy^2$

2. By column method :

(a)
$$x^2 y^2 2xy$$

 $3x^2 y^2 4xy$
 $+ x^2 y^2 0xy$
 $5x^2 3y^2 2xy$

(b)
$$x^2 y xy^2$$

 $11x^2 y 10xy^2$
 $10x^2 y 11xy^2$
 $20x^2 y 0$

(c)
$$4abc 6a^2 7b$$

 $0abc 10a^2 14b$
 $2abc 3a^2 06$
 $2abc 13a^2 216$

(d)
$$2x^2 4y^2 5$$

 $x^2 3y^2 10$
 $2x^2 4y^2 10$
 $x^2 3y^2 5$

3. By column method:

(a)
$$6ab$$

$$18ab$$

$$24ab$$

(b)
$$9a^2b$$

$$a^2b$$

$$10a^2b$$

$$(c) 6pq$$

$$19pq$$

$$13pq$$

$$\begin{array}{c|c}
(d) & 14xy \\
\hline
 & 10xy \\
\hline
 & 2xy
\end{array}$$

(e)
$$3x^2 \frac{14x^2}{11x^2}$$

(f)
$$10x^{3} y$$

$$5x^{3} y$$

$$5x^{3} y$$

4. (a)
$$6a 8b 10$$

 $5a 3b 15$
 $- + -$
 $a 5b 25$

(b)
$$3x^2 4x 2$$

$$x^2 2x 7$$

$$+ + -$$

$$4x^2 2x 5$$

(c)
$$10y$$
 14
 $3x^2$ 5y 7
- + -
 $3x^2$ 15y 7

(d)
$$x^{2} 2xy y^{2}$$

 $x^{2} xy y^{2}$
 $\frac{- + -}{2x^{2} xy}$

(e)
$$2ab^2 3b^2$$

 $ab^2 b^2 a^2b$
 $\frac{-}{3ab^2 2b^2 a^2b}$

(f)
$$6p^3 4p$$

 $4p^3 3p^2 2p$
 $- - +$
 $2p^3 3p^2 2p$

(g)
$$2x^{2}$$

 $6x^{2}$ $8y$ 9
 $+$ $-$
 $8x^{2}$ $8y$ 9

(h)
$$2a^2$$
 $3ab$ $2b^2$
 $5a^2$ $7ab$ $5b^2$
- + -
 $7a^2$ $10ab$ $7b^2$

5. Here, we have to subtract
$$2x^3$$
 $4x^2$ $3x$ 1 from $9x^2$ $7x$ 2 $9x^2$ $7x$ 2

6.
$$10x^3$$
 $4x^2$ ⁶ $5x^3$ $11x^2$ 4 $\frac{-}{5x^3}$ $7x^2$ $\frac{10}{5x^3}$

7.
$$\begin{array}{c|cc}
14xyz & 6xy \\
xyz & 7xy \\
+ & - \\
\hline
15xyz & xy
\end{array}$$

8. Step 1:

$$-7a^{2}b$$
 9
 $3ab^{2}$ 2
 $+$ -
 $7a^{2}b$ $3ab^{2}$ 11

Step 2:

$$7a^{2}b \quad 3ab^{2} \quad 11$$

 $10a^{2}b \quad 4ab^{2}$
- - - 17 $a^{2}b \quad 7ab^{2} \quad 11$

9. Step 1:

$$p^{2}-q^{2}$$
 pq
 $2p^{2}$ $4q^{2}$
 $\frac{+}{3p^{2}}$ $3q^{2}$ pq

Step 2:
$$3p^{2} \quad 3q^{2} \quad pq$$

$$p^{2} \quad 2pq$$

$$+ \quad -$$

$$4p^{2} \quad 3q^{2} \quad pq$$

Step 2:

$$3xy \quad 4x^2 \quad 4$$

$$15xy \quad x^2 \quad 2$$

$$12xy \quad 5x^2 \quad 2$$

12. Required other expression x^2 y^2 3y 5 (on subtraction) $\frac{2y^2 \quad 2x \quad y \quad 10}{- \quad - \quad + \quad + \quad }$ $\frac{- \quad - \quad + \quad + \quad }{x^2 \quad 3y^2 \quad 2x \quad 4y \quad 5}$

Exercise 6.3

1. Given x = 2, y = 1

(c)
$$4x^2$$
 5 4 $(2)^2$ 5 4 4 5=16-5=11

(d)
$$y^2 + 2y + (1)^2 + 2 + 1 + 2 + 1$$

(e)
$$x^2$$
 y^2 xy $(2)^2$ 1^2 2 1 4 1 2=3

(f)
$$x^2$$
 y^2 $(2)^2$ $(1)^2$ 4 1 3

2. Given a = 2, b = 2, c = 1

(b)
$$a^3$$
 b^3 c^3 $(2)^3$ $(2)^3$ $(1)^3$ 8 8 1 1

(c)
$$a^2b$$
 ab^2 (2)² (2) 2 (2)² 4 (2) 2 4 8 8 0

(e)
$$a^2b$$
 b^2c c^2a $(2)^2$ (2) $(2)^2$ 1 $(1)^2$ 2 8 4 2 8 6 2

(f)
$$a^2b$$
 a^2c $2a^2$ $(2)^2$ (2) $(2)^2$ 1 $2(2)^2$ 4 (2) 4 1 2 4

(g)
$$ab^2c$$
 a^2bc abc^2 (2) $(2)^2$ 1 $(2)^2$ (2) 1 2 (2) $(1)^2$ 2 4 1 4 2 1 4 8 8 4 12

(h)
$$a^2$$
 b^2 c^2 2 ab 2 bc 2 ac (2) 2 (2) 2 (1) 2 2 (2)

(i)
$$a^3$$
 b^3 c^3 $3abc$ $(2)^3$ $(2)^3$ $(1)^3$ 3 2 (2) 1 8 8 1 12 13

3. (a)
$$4p$$
 q $6p$ q $(4p$ $6p)$ $(q$ $q)$ $2p$ $2q$ 2 (1) 2 1 [Put p

(b)
$$7p^2 q^2 8p^2 q^2 (7p^2 8p^2) (q^2 q^2)$$
 [Put p 1] $p^2 (1)^2 (1) 1$

(c)
$$10pq$$
 $2qr$ $6pr$ $4pq$ $(10pq$ $4pq)$ $2qr$ $6pr$ $(Put p$ $1,q$ $1,r$ $2)$ 14 (1) 1 2 1 2 6 (1) 2 14 4 12 18 12 6

(d)
$$pqr \ 6pqr \ 7q^2 \ 4p^2$$

 $(pqr \ 6pqr) \ 7q^2 \ 4p^2$
 $(5pqr) \ 7q^2 \ 4p^2$

```
\begin{bmatrix} 5 & (1) & 1 & 2 \end{bmatrix} 7(1)^2 4(1)^2 [Put p = 1, q = 1, r = 2]
   (e) 5p^2 6q 7r^2 6p^2 5q^2 2r^2
                     (5p^2 	 6p^2) 	 (6q^2 	 5q^2) 	 (7r^2 	 2r^2)
                      11p^2 \quad (11q^2) \quad (5r)^2
                     11. (1)^2 11. (1)^2 5. (2)^2 [Put p 1, q 1, r 2]
                     11 11 20 20
   (f) 5(p \ q) \ 3p \ 2q \ 5p \ 5q \ 3p \ 2q \ (5p \ 3p) \ (5q \ 2q)
                      2p 3q
                                                 [Put p = 1, q = 1]
                      2 (1) 3 1
                       2 3 1
4. (a) x + 7 + 4(x + 5) + x + 7 + 4x + 20 + 5x + 7 + 20 + 5x + 13
        Put x = 2 in (5x = 13), we have
                    5x 13 5 2 13 10 13 3
   (b) 3(x \ 2) \ 5x \ 7 \ 3x \ 6 \ 5x \ 7
                         (3x 	 5x) 	 (6 	 7) 	 8x 	 1
        Put x = 2 in (8x = 1), we have
                 8x 1 8 2 1 16 1 15
   (c) 6x 	 5(x 	 2) 	 6x 	 5x 	 10 	 11x 	 10
        Put x = 2 in (11x = 10), we have
                11x 10 11 2 10 22 10 12
   (d) 4(2x \ 1) \ 3x \ 11 \ 8x \ 4 \ 3x \ 11 \ (8x \ 3x) \ (11 \ 4) \ 11x \ 7
        Put x = 2 in (11x = 7), we have
                11x 7 11 2 7 22 7 29
5. (i) Put z = 10 in z^3. 3(z = 10), we have
                    z^3 3(z 10) 10<sup>3</sup> 3(10 10) 1000 3 0 1000
                10 \text{ in } (p^2 \ 2p \ 100), we have
   (ii) Put p
                    p^2 2p 100 (10)<sup>2</sup> 2 (10) 100
                                   100 20 100 20
                                     MCO's
   1.
       (b)
                2. (c)
                              3. (b)
                                         4. (a) 5. (c) 6. (b)
   7. (c)
                8. (c)
                             9. (a) 10. (d).
```

Commercial Mathematics

Exercise 7.1

- 1. (a) 60 minutes to 3 hours 1 hours to 3 hours Ratio 1:3
- (b) 32 cm to 4 m
- 32 cm to 400 cm Ratio 2:25

(c) 800 ml to 4.8 litres

800 ml to 480 ml Ratio 1:6

2. Total number of 90

> Social Science 10; Hindi 18

> > English 27

Science 90 (10 18 27) 35

- (a) Ratio of number of social science books to science books 10:35 2:7
- Ratio of number of Hindi to English book 18:27 2:3
- Ratio of Number of Social Science to total number of book 10:90 1:9
- 15 χ **3.** (a) 75 300

- 6
- 300 15 75 x_1 300 15 60

32 6 4 x_1

75 And, 300 x_2

60 x_2 75 300 75 300 375 60

 $6x_2$

And

48 x_3

- 48 3 $2x_3$
- 5:4 4. Given Ratio in between A and B
 - ₹ 900 $\frac{5}{9}$ ₹ 500 A's share
 - ₹ 900 B's share ₹ 400
- Given Ratio in between A, B and C 3:4:5
 - ₹ 324 $\frac{3}{12}$ ₹ 81 A's share
 - ₹ 324 $\frac{4}{12}$ ₹ 324 $\frac{5}{12}$ B's share ₹108
 - ₹135 C's share
- Total number of animals 95
 - Number of houses
 - Number of rabbits 20.

95 (5 20) 70 Number of hens

5,

- (a) Ratio in number of horses to the total number of the animals 5:95 1:19
- (b) Ratio in number of rabbits to number of horses 20:5 4:1
- (c) Ratio in number of hens to number of horses 70:5 14:1
- (d) Ratio in number of hens to number of rabbits 70:20 7:2
- 7.

A:B2:3 ...(1)

$$B:C$$
 4:5 ...(2)

Multiply (1) by (4) and (2) by (3), we get

(b) A:C 8:15

$$\begin{array}{ccc}
\frac{a}{b} & \frac{4}{5} \\
5 & \frac{4b}{5} & b \\
\hline
5 & \frac{4b}{5} & b
\end{array}$$

$$a = \frac{4b}{5}$$

$$\frac{5 \quad \frac{4b}{5}}{5 \quad 4b}$$

$$\frac{4b}{4b}$$
 $\frac{b}{b}$ $\frac{5b}{3b}$ $\frac{5}{3}$

9.
$$x:y$$
 1:2

$$\frac{x}{y} = \frac{1}{2}$$
 $x = \frac{y}{2}$

$$x = \frac{y}{2}$$

$$\frac{2x}{y} \frac{y}{x} = \frac{2}{\frac{y}{z}} \frac{y}{y} = \frac{y}{\frac{2y}{z}} = \frac{y}{\frac{2y}{z}} = \frac{y}{\frac{2y}{z}} = \frac{2(y-y)}{\frac{2y}{z}} = \frac{2(y-y)}{\frac{2y}{z}} = \frac{2}{\frac{2y}{z}} = \frac{4y}{y} = \frac{4}{1} = 4:1$$

$$\frac{2x}{y} \frac{3y}{1} = \frac{1}{1} = \frac{2}{1} =$$

10.
$$\frac{2x + 3y}{x + 8y} = \frac{1}{z}$$

$$2(2x + 3y) + 1(x + 8y)$$
 [cross multiplication]

$$\frac{5m}{n}\frac{n}{m} = \frac{9}{7}$$

2n

12. Let one number
$$4x$$
 second number $7x$

44m

According to

Question;
$$\frac{4x}{7x} = \frac{3}{3} = \frac{5}{8}$$

 $(4x = 3)8 = 5(7x = 3)$
 $22x = 24 = 35x = 15$
 $9 = 3x$
 $x = 9 = 3 = 3$

The numbers are

12 3:4 is greater ratio of 2:3.

14. Perimeter of the triangle

Ratio fo triangle sides 2:3:4
one side of triangle 54
$$\frac{2}{9}$$
 12 cm
two side of triangle 54 $\frac{3}{2}$ 18 cm

12

Three side of triangle 24 cm

Exercise 7.2

1. (a) 30, 35, 40, 45

It is not proportion.

The production of extremes product of means.

It is proportion.;

(c) 14, 18, 21, 27

The production of extremes Product of means

It is production.

2. (a) 4, 6, 6, 9

The production of extremes Product of means.

It is proportion.

The product of extremes Product of means

It is not proportion.

(c) 4, 12, 36 11, 12, 12, 36

The product of extremes Product of means.

It is proportion.

(d) 3, 9, 27 3, 9, 9, 27

The product of extremes Product of means

It is proportion

3. (a) 21:38 x:52

21 52 28*x* [Product of extremes Product of means]

$$x = \frac{21}{28} = 39$$

11:*x* 12:72 (b)

> 11 72 12x[Product of extremes Product of means]

$$x = \frac{11}{12}$$
 66

x:45 24:60(c)

[Product of extremes Product of means]

4. (a) Let the fourth proportion to 8, 12 and 16 be x:

8:12 16:*x*

8*x* 12 16 [Product of extremes Product of means]

(b) Let the fourth proportion to 4, 7 and 8 be x

4:7 8:*x*

4*x* 7 8 [Product of extremes Product of means] $x = \frac{7 - 8}{4} \quad 14$

(c) Let the fourth proportion to 1, 6 and 10 be x

 $1:6 \quad 10:x$

1 x 6 10 [Product of extremes Product of means] x 60

(d) Let the fourth proportion to 30, 40 and 45 be x

30:40 45:x [Product of extremes Product of means]

5. (a) Let third proportion to 9 and 4 be x (b) Let third proportion to 2 and 8 be x

2:x::x:4

 $2 \ 8 \ x^2$

$$16 x^2$$

 $x \sqrt{16} \ 4$

- (c) Let third proportion to 25 and 4 be x (d) Let third proportion to 9 and 16 be x

9 16 x^2

144
$$x^2$$

 $x \sqrt{144}$ 12

25:x::x:4 $25 \ 4 \ x^2$

9:x::x:4

9 4 x^2

36 x

 $x \sqrt{36} = 6$

 $100 x^2$

 $x = \sqrt{100} = 10$

```
Than; number is (1 \ x);
     (3 \ x);
                             (1 \ x):(3 \ x)::(10 \ x):(18 \ x)
                               (1 \ x)(18 \ x)
                                                  (10 \ x)(3 \ x)
                             18 \ x \ 18x \ x^2
                                                  30 	 10x 	 3x 	 x^2
                                                      13x 	 x^2
                                18 19x x^2
                                                  30
                                     19x \ 13x
                                                  30 18
                                            6x
                                                  12
                                                  2
 7.
                  Bulbs in working conation
                                                  12
                              Defective bulbs
       Ratio of working and defective bulbs
                                                  12:3 4:1
                              Defective bulbs
 8.
                       Scale of the map 1 cm
                                                  5000000
         Actual distance between two towns
                                                  2 cm
                       scale of the map 2 cm
                                                  2 5000000
                                                  10,00,00,000 cm 100 km
 9.
           Ratio of present ages of two girls
                                                  3:5
                           Let age of one girl
                                                  3x
                  Let age of one second line
                                                  5x
     Five years ago,
                               age of one girl
                                                  3x = 5
                                   second girl
                                                  5x 	 5
                                         Ratio
                                                  3x \ 5:5x \ 5
     According to question
              Ration of her age in 5 year ago
                                                  1:2
                                 3x \ 5:5x \ 5
                                                  1:2
                                                  1
                                         5x 5
                                                  2
                                     2(3x - 5)
                                                  (5x \ 5)
                                                               (cross multiplication)
                                        6x 10
                                                 5x 	 5
                                        6x
                                           5x
                                                  10 5
                                                  5
                       Present age of one girl
                                                  3 5 15 year
                   Present age of second girl
                                                  5 5 25 year
10.
                   Distance covered by train
                                                  180 km
                                   time taken
                                                  3 hours
                                speed of train
                                                  3 hours
                                                                             \therefore Speed = \frac{\text{Distance}}{\text{Distance}}
                                                  180
                                speed of train
                                                         60 km/hour
                   Distance covered by train
                                                  240 km
                               Speed of train
                                                  60 km/hour
                                                                              \therefore \text{ Time} = \frac{\text{Distance}}{\text{Speed}}
                           time taken by train
                                                         6 hour
                                                   60
```

6. Let *x* number be added

Exercise 7.3

Cost of 1 book
$$\stackrel{?}{\underset{12}{\overline{}}} \frac{606}{12} \stackrel{?}{\underset{12}{\overline{}}} 50.5$$

we can bought for ₹ 1010
$$\frac{1010 \text{ } 12}{606}$$
 20

Cost of 1 metre o cloth
$$\stackrel{?}{\stackrel{?}{=}} \frac{1800}{30}$$

Cost of 35 metre of cloth
$$\stackrel{?}{\stackrel{?}{=}} \frac{1800}{30}$$
 35 $\stackrel{?}{\stackrel{?}{=}} 2100$

Selling price of doll ₹ 300 than tax on it ₹
$$\frac{62.50}{625}$$
 300 ₹ 30

Cost of 1 litre milk
$$\stackrel{?}{=} \frac{112.50}{5}$$

Cost of 2 litre milk
$$\frac{112.50}{5}$$
 2 ₹ 45

1 chocolate are packed in
$$\frac{15}{900}$$

1500 chocolate are packed in
$$\frac{15}{900}$$
 1500 25 box

6. Capacity of water tank 1.2 kilolitre or 1200 liter

1 litre store in
$$\frac{1}{1200}$$
 water tank

180000 litre store in
$$\frac{1}{1200}$$
 180000 150 water tank

1 months income of a labourer
$$\stackrel{?}{=} \frac{24000}{4}$$

12 month income of a labourer
$$₹ \frac{24000}{4}$$
 12 ₹ 72000

Speed
$$\frac{4800}{8}$$
 600 km/hour Speed $\frac{\text{Distance}}{\text{Time taken}}$

Time taken
$$\frac{1800}{600}$$
 3 hour Time take $\frac{\text{Distance}}{\text{Speed}}$

5. (b)

MCO's

Exercise 8.1

- Half of y is $\frac{y}{2}$ (a)
 - Seven times m is 7 m. (b)
 - (c) The equation is n = 10 = 25
 - (d) Difference of d and 11 is d
 - (e) 5 times b is 5b
 - 5 times x is 5x(f)
 - (g) one-sixth of C is more than 8

The equation is $\frac{C}{6}$ 8 2

or, $\frac{C}{\epsilon}$ is greater than 8 by 2

- (h) one-fourth of *P* is $\frac{P}{A}$
- (i) The equation of t and 7 is $\frac{t}{7}$
 - 13 is added in it, so it will be $\frac{t}{7}$
- 8 times e is 8e (i)
- (k) Total of a number x and 2 is x = 29 less from the total is (x 2)
- **2.** (a) 5 subtract from y gives 12
 - (c) Sum of x and 3 is 14
 - (e) Negative quotient of P and 7 is 7
 - (g) 3 less than quotient of b and 7 is 8
 - (i) 7 subtracted from one-fifth of y is 8
 - (k) Three-fourth of a number P is 15
- 3. (a) Let the number of boys in the class x

Then, then number of girls are $\frac{2}{5}$ of $x = \frac{2x}{5}$

Total students in the class = 35

The equation is $x = \frac{2x}{5}$ 35,

(where x is number of boys)

(b) Let the number be x and its half is $\frac{x}{2}$.

The equation is $x = \frac{x}{2}$ 33.

- (c) Let Two consecutive numbers be x and (x 1). Their sum is x (x 1). The equation is x (x 1) 51, or 2x 51
- (d) Let the breadth of a rectangle is (x) m. Then, the length of the rectangle is (2x - 6) m. The perimeter of rectangle = 240 m

- The equation is $\frac{y}{2}$ 33
- The equation is 7m 84
- The equation is d 11
- The equation is 5b
- The equation is 5x
- The equation is $\frac{C}{6}$ 8 2
- The equation is $\frac{P}{4}$ 4 40
- The equation is $\frac{l}{7}$ 13 20
- The equation is 8e 8
- The equation is $(x \ 2) \ 9 \ 53$
- (b) Quotient of q and 9 is 9
- (d) Difference between 5 and y is 3
- (f) 14 less than 3 times x results in 4
- (h) 11 is added to 6 times x given 35
- (i) 16 times *m* is 96

The equation is x = (2x - 6) = x = (2x - 6) = 2402x = 2(2x - 6) = 240

or, 2x + 4x + 12 + 240

or, 6x 12 240

(e) Let B C x. Then A 3 B 3x

or, $A = 3 \quad C \quad 3x$

The equation is A = B = C = 180i.e., $A = \frac{A}{3} = \frac{A}{3} = 180$

 $[:: A \quad B \quad 3 \quad C]$

(f) Let Viabhav's Age is x years.

Then, Vaibhav's father's age is (3x - 4) years but Vaibhav's father is 43 years. The equation is (3x - 4) - 43, where x is Vaibhav's age.

(g) Let Gautam scored the runs x

Then Rahul scored the runs 2x

The sum of their runs (2x x 5)

[::century 100 runs, double century 100 100 200 runs]

(h) Let Isha is x ears old. Then, Saurabhs' age x 6

Sum of their ages is x (x 6).

The equation is $x = \begin{pmatrix} x & 6 \end{pmatrix} = 24$ 2x = 6 = 24.

or,

or,

Exercise 8.2

1. 2*b* 5 17, *b* 6

Substituting b 6 in the equation

L.H.S. 2 6 5 12 5 17 R.H.S.

b 6 is a solution of the given equation.

2. 8 7*x* 20, *n* 2

Substituting n 2 in the equation

L.H.S. 8 7n 7 7 2 8 14 6

R.H.S. 20

L.H.S. R.H.S.

n 2 is not a solution of the given equation.

3. 9*q* 3 15, *q* 2

Substituting q 2 in the equation

L.H.S. 9 2 3 18 3 15 R.H.S.

q 2 is a solution of the given equation.

4. $\frac{a}{20}$ **4**, a 60

Substituting a 60 in the equation

L.H.S.
$$\frac{60}{20}$$

and, R.H.S. 4

Since L.H.S. R.H.S.

a 60 is not a solution of the given equation.

5. $\frac{y}{2}$ 4 0, y 8

Substituting y = 8 in the equation

L.H.S.
$$\frac{8}{2}$$
 4 4 4 0 R.H.S.

y 8 is a solution of the given equation.

6. 4*S* 80, *s* 76

Substituting s 76 in the equation

L.H.S. 4 76 304 R.H.S.

s 76 is not a solution of the given equation.

7. 13*b* 169, *b* 13

Substituting b 13 in the equation

L.H.S. 13 13 169 = R.H.S.

b 13 is a solution of the given equation.

8. 11 23*x* 11, *x* 1

Substituting x 1 in the equation

L.H.S. 11 23 1 11 23 34 R.H.S.

x 1 is not a solution of the given equation.

9. 2*x* 1 *x* 3, *x* 1

Substituting x 1 in the equation

L.H.S. 2 1 1 2 1 3

R.H.S. 1 3 4

Since L.H.S. R.H.S.

x 1 is not a solution of the given equation.

Exercise 8.3

1. 8*z* 20 52

We have,
$$8z$$
 20 52
 $8z$ 52 20 (by transposition)
 $8z$ 32
 z $\frac{32}{8}$ (by transposition)

Hence, z = 4 is a solution.

Check: L.H.S. 8z 20 8 4 20 52= R.H.S.

2. $\frac{a}{13}$ 6 5

We have,
$$\frac{a}{13}$$
 6 5
$$\frac{a}{13}$$
 5 6 (by transposition)
$$\frac{a}{13}$$
 1
$$a$$
 1 13 (by transposition)
$$a$$
 13

Check: L.H.S.
$$\frac{a}{13}$$
 6 $\frac{13}{13}$ 6

1 6 6 1 5 = R.H.S.

3.
$$\frac{5}{2}y$$
 60

We have,
$$\frac{5y}{2}$$
 60
 $y = 60 - \frac{5}{2}$ (By transposition)
 $y = \frac{12}{60} - \frac{2}{5}$
 $y = 24$

Hence, y 24 is a solution of the given equation.

Check: L.H.S. $\frac{5}{2}y + \frac{5}{2} = \frac{12}{24} = 5 + 12 = 60 = \text{R.H.S.}$

We have,
$$2(y 3) 7
2y 6 7
2y 7 6 (by transposition)
2y 13
y $\frac{13}{12}$ (by transposition)
$$y \frac{13}{12}$$$$

Hence, $y = \frac{13}{2}$ is a solution of the given equation.

$$7 = R.H.S.$$

Hence, t 3 is a solution of the given equation.

Check: L.H.S. 12t 1 12 3 1 36 1 37 R.H.S.

6.
$$\frac{x}{4}$$
 9 7

We have
$$\frac{x}{4} = 9 = 7$$
 $\frac{x}{4} = 7 = 9$ (By transposition)

$$\frac{x}{4}$$
 2
 x 2 4 (By transposition)
 x 8

Hence, x 8 is a solution of the given equation.

Check: L.H.S.
$$\frac{x}{4}$$
 9 $\frac{8}{4}$ 9 2 9 7= R.H.S.

7.
$$2m \quad \frac{5}{2} \quad \frac{37}{2}$$

We have,
$$2m \quad \frac{37}{2} \quad \frac{5}{2}$$
 (by transposition)
$$2m \quad \frac{37}{2} \quad \frac{5}{2} \quad 16$$

$$m \quad \frac{16}{2}$$
 (By transposition)

Hence, m 8 is a solution of the given equation.

Check: L.H.S.
$$2m = \frac{5}{2} = 2 = 8 = \frac{5}{2}$$

 $16 = \frac{5}{2} = \frac{32}{2} = \frac{37}{2} = \text{R.H.S.}$

8.
$$3(4 x) 2x 5$$

We have,
$$3(4 \ x) \ 2x \ 5$$

 $12 \ 3x \ 2x \ 5$
 $3x \ 2x \ 5$ (by transposition)
 $3x \ 2x \ 17$
 $3x \ 2x \ 17$ (by transposition)
 $x \ 17$

Hence, x 17 is a solution of the given equation.

Check: L.H.S.
$$3(4 \ x)$$
 12 3x 12 3 17 12 51 39 R.H.S. $2x$ 5 2 17 5 34 5 39 L.H.S. = R.H.S.

9.
$$4x \quad \frac{1}{3} \quad \frac{1}{5} \quad 3x$$

We have,
$$4x \quad \frac{1}{3} \quad \frac{1}{5} \quad 3x$$

$$4x \quad \frac{1}{3} \quad 3x \quad \frac{1}{5} \qquad \text{(by transposition)}$$

$$x \quad \frac{1}{3} \quad \frac{1}{5} \qquad x \quad \frac{1}{5} \quad \frac{1}{3} \qquad \text{(by transposition)}$$

$$x \quad \frac{3}{15} \quad \frac{1}{3} \qquad x \quad \frac{8}{15}$$
Hence, $x = \frac{8}{15}$ is a solution of the given equation.

Hence, $x = \frac{8}{15}$ is a solution of the given equation.

Check: L.H.S.
$$4x \frac{1}{3} 4 \frac{8}{15} \frac{1}{3} \frac{32}{15} \frac{1}{3} \frac{32}{15} \frac{5}{15} \frac{27}{15} \frac{9}{5}$$

R.H.S. $\frac{1}{5} 3x \frac{1}{5} \frac{1}{3} \frac{8}{15} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{8}{5} \frac{9}{5}$

$$L.H.S. = R.H.S$$

26x 7 19 26x 26

(by transposition)

(by transposition)

Hence, x 1 is a solution of the given equation.

L.H.S. $4(5x \ 4) \ 3(2x \ 1)$ Check: $4(5 \ 1 \ 4) \ 3(2 \ 1 \ 1)$ $4(5 \ 4) \ 3(2 \ 1 \ 1)$

> 4 1 3 1 4 3 7 = R.H.S.

 $7x \quad 2x \quad 4 \quad 20 \quad 2x \quad 5$ 9*x* 4 25 2*x*

9x 2x 4 25(by transposition) (by transposition)

(by transposition)

Hence, $x = \frac{21}{11}$ is a solution of the given equation.

Check: L.H.S.
$$7x - 2(x - 2)$$

 $\frac{147 \quad 42 \quad 44}{11} \quad \frac{233}{11}$ R.H.S. 20 (2x 5) 20 2 $\frac{21}{11}$ 5 20 $\frac{42}{11}$ 5 $25 \quad \frac{42}{11} \quad \frac{275}{11} \quad \frac{42}{11} \quad \frac{233}{11}$

L.H.S. = R.H.S.

12.
$$\frac{y}{5}$$
 $\frac{y}{6}$ $\frac{1}{30}$

 $\frac{6y}{30} = \frac{5y}{30}$ [LCMof (5,6) 30]

$$\frac{y}{30} = \frac{1}{30}$$

$$y = \frac{1}{30} = 30$$
 (by transposition)
$$y = 1$$

13. 23 4*x* 25 4x

or,
$$23$$
 25 $4x$ $4x$ (by transposition)

or,
$$23 25 8x$$
 (by transposition)

or,
$$8x 48$$

or,
$$x = \frac{48}{8}$$
 or, $x = 6$

Hence, x 6 is a solution.

(by transposition)

14.
$$\frac{2x}{3}$$
 $\frac{x}{2}$ 30

or,

$$\frac{4x - 3x}{6} = 30$$
 [LCM of (3, 2) = 6]

$$\frac{x}{6} = 30$$

x 30 6 (by transposition)
x 180

Hence, x 180 is a solution.

Check: L.H.S.
$$\frac{2x}{3} = \frac{x}{2} = \frac{2 + 80}{2} = \frac{180}{2}$$

$$120 = 80 = 120$$
= R.H.S.

We have,
$$0 \ 18 \ 9(m \ 2)$$

 $0 \ 18 \ 9m \ 18$
 $0 \ 9m$
 $\frac{0}{9} \ m$ (by transposition)
or, $m \ 0$

Hence, m 0 is a solution of this equation.

Check: R.H.S.
$$18 \ 9(m^2) \ 18 \ 9(0 \ 2)$$

18 9 0 9 2 18 18 0 L.H.S.

We have, $34 \quad 5(n \quad 1) \quad 4$

34
$$5n$$
 5 4
39 $5n$ 4
 $5n$ 4 39 (by transposition)
 $5n$ 35
 n $\frac{35}{(5)}$ (by transposition)
 n 7s

Hence, n 7 is a solution.

Check: L.H.S. 34 $5(n \ 1)$ 34 $5(7 \ 1)$ 34 5 6 34 3 4 = R.H.S.

17.
$$\frac{x}{4}$$
 $\frac{x}{5}$ 1

We have, $\frac{x}{4} = \frac{x}{5} = 1$ $\frac{x}{4} = \frac{x}{5} = 1$ $\frac{5x}{4} = \frac{4x}{5} = 1$ $\frac{5x}{20} = 1$ x = 1 = 20(by transposition)

Hence, x 20 is a solution.

Check: L.H.S.
$$\frac{x}{4} = \frac{20}{4} = 5$$

R.H.S. $\frac{x}{5} = 1$
 $\frac{20}{5} = 1 = 4 = 1 = 5$

L.H.S. R.H.S.

18.
$$\frac{7b}{8}$$
 15 1

We have,
$$\frac{7b}{8}$$
 15 1 (by transposition) $\frac{7b}{8}$ 14 (by transposition) $\frac{7b}{8}$ 14 (by transposition)

$$b = \frac{14 \cdot 18}{1}$$
 (by transposition)

b 16

Hence, b 16 is a solution.

Check: L.H.S.
$$\frac{7b}{8}$$
 15 $\frac{7}{8}$ 15 7 2 15 14 15 1= R.H.S.

19. $5(x \ 3)$ 45

We have,
$$5(x \quad 3) \quad 45$$

$$5x \quad 15 \quad 45$$

$$5x \quad 15 \quad 45$$

$$5x \quad 30$$

$$x \quad \frac{30}{5}$$
(by transposition)
$$x \quad 6$$

Hence, x 6 is a solution.

Check: L.H.S. $5(x \ 3) \ 5(6 \ 3) \ 5(9) \ 45 = R.H.S.$

20. 3*P* 2(2*P* 5) 2(*P* 3) 8

Hence, P 4 is a solution.

Exercise 8.4

1. Let one of the numbers be x. Then, the second number will be (x 1).

Then,
$$x (x 1) 203$$
 $2x 1 203$ $2x 203 1$ $2x 202$ $x 101$

one number = 101 and the second number 101 1 102

2. Let one of the odd numbers be x

Then, the next consecutive odd number
$$x = 2$$

Sum of 2 consecutive odd number = 136

or,
$$x (x 2) 136$$

or, $2x 2 136$
or, $2x (136 2) 134$
or, $x \frac{134}{2} 67$
 $x 67$

Hence, one odd number = 67

and the second odd number 67 2 69

3. Let one the even number be x.

Then, the next consecutive even number x = 2.

Sum of 2 consecutive even number 502

Hence, one even number = 250 and the second even number 250 2 252

4. Let the 3 consecutive integers be x, x = 1, x = 2

Sum of all the inegers is x (x 1) (x 2).

or,
$$x = \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} x & 2 \end{pmatrix} = \begin{pmatrix} x & 2 \end{pmatrix}$$
or, $3x & 3 & 24$
or, $3x & 24 & 3 & 21$
or, $x = \begin{pmatrix} \frac{21}{3} & 7 & x & 7 \end{pmatrix}$

First integer = 7 Second 7 1 8 and the third integer 7 2 9

5. Let the number be x. 35 added to x gives x 35.

So, the following equation is obtained.

Hence, the number is 182.

- **Check:** 182 35 217
- **6.** Let the number be x. twice the number is 2x.

7 added to 2x gives 59, so we obtain the following equation.

Hence, the required number is 26.

Check: 2 26 7 52 7 59

7. Let the number be x. 5 times the number 5x,

Subtracting 3 from it, we get 5x 3. so, the following equation is obtained

Hence, the required number is 9.

Check: Do yourself as above.

8. Let the number be x. Multiplication by $\frac{5}{6}$ is $\frac{5x}{6}$,

So we obtain the following equation.

Hence, the required number is 72.

9. Let the number be x. Two-third of the number is $\frac{2}{3}x$.

one-third of the number is $\frac{x}{3}$. So, the equation is

Hence, the required number is 9.

10. Let the number be x. Its three-fourth is $\frac{3}{4}x$.

So, the equation is
$$x = \frac{3x}{4} = 91$$

$$\frac{4x = 3x}{4} = 91$$

$$7x = 91 = 4$$

$$x = \frac{13}{91} = 4$$

$$x = \frac{13}{7} = 13 = 4$$

x 52

Hence, the required number is 52.

11. Let the number of boys in the class be x.

Then, the number of girls
$$\frac{5}{6}$$
 of the number of boys $\frac{5}{6}$ x $\frac{5x}{6}$

Total number of students 44

Now, the number of girls + The number of boys = Total number of students

$$\frac{3x}{6} \times 44 \qquad \frac{5x}{6} \times 44 \\
\frac{11x}{6} \times 44 \qquad x = \frac{44}{11} \times 6$$

x 24

Hence, the number of girls in the class $\frac{5}{6}$ $\frac{4}{24}$ 20

12. Let the number be x. half of the number is $\frac{x}{2}$.

$$x = \frac{x}{2}$$
 45

$$\frac{2x}{2} \quad x$$

$$\frac{3x}{2} \quad 45$$

$$3x \quad 45 \quad 2$$

$$x \quad \frac{45}{3} \quad 2 \quad 30$$

$$x \quad 30$$

The number = 30

13. Let Sahil's age be x years. Then his mother's age is 5x. Sum of their ages is (x - 5x) years.

$$\begin{array}{ccccc}
x & 5x & 48 \\
6x & 48 & 8 \\
x & \frac{48}{6} & 8 \\
x & 8 & 8
\end{array}$$

Hence, Sahil age = 8 years and is mother's age 5 8 40 years

14. Let Mayank's present age x years

Then, after 15 years, Mayank's age (x 15) years

Manayk's present age = 5 years

15. Let Isha's brother age be *x* years.

Then, Ishas's age (x 5) years.

After 4 years, Isha's brother age will be (x + 4) years

Ratio of both age 2:3

and Isha's age will be
$$(x 5) 4 (x 1)$$
 years
$$\frac{(x 5) 4}{x 4} \frac{2}{3} \frac{x 1}{x 4} \frac{1}{3}$$

$$3(x 1) 2(x 4)$$

$$3x 3 2x 8$$

$$3x 2x 8 3$$

x 11

Hence, Isha's brother age x 11 years and Isha's age (x 5) (11 5) 6 years

16. Let breadth of rectangle x m. Then length of rectangle (4x - 3) m

Breadth $x = 10 \,\mathrm{m}$

Length $(4x \ 3) \ 4 \ 10 \ 3 \ 40 \ 3 \ 37 \,\mathrm{m}$

17. Let Yuvraj scored x runs and Gautam scored 2x

Together, their run fell five short of a double century (100 100 5) 195

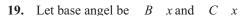
$$\begin{array}{cccc}
x & 2x & 195 \\
3x & 195 \\
x & \frac{65}{3} \\
\end{array}$$

x 65

Yuvraj scored x 65 runs

Gautam scored 2x 2 65 130 runs

18. Let angle are $A \times x$, $B \times 2x$, $C \times 3x$


We know that the sum of 3 angles of a triangle is 180°.

The equation is.
$$A B C 180$$

i.e., $x 2x 3x 180$
 $6x 180$
 30

$$\begin{array}{c}
x & 180 \\
30 \\
180 \\
\hline
6 \\
1
\end{array}$$

$$x & 30$$

90

Then, vertex angle A = 3x

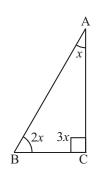
The sum of 3 angles of a triangle is 180°.

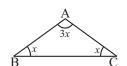
C = 3x = 3 = 30

i.e.,
$$A = B = C = 180$$

 $3x = x = x = 180$
 $5x = 180$
 $x = \frac{180}{5} = 36$

measure of $\begin{array}{ccc} B & x & 36 \\ measure of & C & x & 36 \end{array}$


measure of A = 3x = 3 = 36 = 108


20. Let Garima's age be x years

Then her mother's age 3x

Hence, the equation is, x = 3x = 72

Hence, Garima's age = 18 years and mother age 3 18 54 years

21. Let the number of 2-rupee coins be x

the number of 1-rupee coins

value of one-rupee coin = ₹ 2

value of x 2-rupee coin = \mathbb{Z} 2x

value of one 1-rupee coin = ₹ 1

value of 3x 1-rupee coin = ₹ 3x

Total value of (2-rupee + 1-rupee) coins = $\mathbf{\xi}$ (2x

Hence, the equation is 2x3x₹ 50

Number of 2 rupee coins x = 10

Number of 1-rupee coins 3x + 3 + 10 + 30

22. Total number of notes = 30

Let the number of ≥ 100 notes be x

The number of $\stackrel{?}{\stackrel{?}{?}}$ 500 notes be (30 x)

Total rupees in the purse is ₹ 5000.

The equation is x 100 (30 x) 500 5000

100x 15000 500x 5000 15000 400x 5000

10000 400x

2.5 10000 400

x = 25

Hence, the number of $\ge 100 = 25$

And the number of $\stackrel{?}{\stackrel{?}{\checkmark}} 500$ (30 25) 5

MCO's

- 1. (d) **2.** (c)
- 3. (c)
- (b)

4.

- **5.** (a)
- **b.** (c)

Understanding Shapes

Exercise 9.1

1. (a) Since AOB is a straight line

AOB 180

72 a 180

a 180 72 108

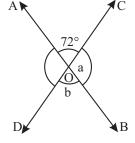
(b) Adjacent angles are

BOC, COA, AOD, DOB

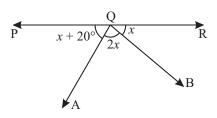
(c) Vertically opposite angles are

(AOC and DOB)

(AOD and BOC).

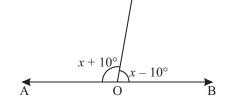

DOBAOC 72 (d) BOC

AOD


(vertically opposite angles (vertically opposite angles)

AODа

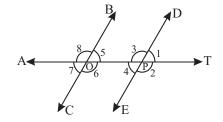
108 AOD

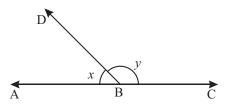


2. Since *PQR* is a straight line.

- (a) AQB 2x 2 40 80
- (b) BQP 2x x 20 3x 20 3 40 20 140
- (c) $AQR \quad 2x \quad x \quad 3x \quad 3 \quad 40 \quad 120$


3. Since *AOB* is a straight line.


- (a) AOP x 10 90 10 100
- (b) BOP x 10 90 10 80
- (c) Since 80 90 BOP is acute angle.
- (d) Since 100 90.


 AOP is obtuse angle.
- 4. (a) Linear pairs will be:

(b) Vertically opposite angles are :

Since ABC is a straight line

6. y ?, If $x = \frac{y}{2}$ Since ABC is a straight line (from the figure)

$$\begin{array}{ccc}
ABC & 180 \\
x & y & 180^{\circ} \\
\frac{y}{2} & y & 180
\end{array}$$

$$\therefore x = \frac{y}{2}$$
 (given)

$$\frac{3y}{2}$$
 180

$$y = \frac{180^{\circ} 2}{2}$$
 120

7. If
$$y = 2x, x = ?, y = ?$$

Since ABC is a straight line

$$ABC$$
 180
 x y 180
 x 2 x 180 [∴ y 2 x given]
 x $\frac{180}{3}$ 60 x 60
 y 2 x 2 60 120 y 120

8. If
$$y = 1\frac{1}{2}$$
 right angle, $x = 1$

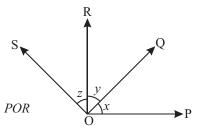
$$y = \frac{3}{2} \text{ right angle}$$

$$\frac{3}{2} = 90 = 3 = 45$$

[: 1Right angle 90]

v 120

Since ABC is a straight line (from the fig.)


135

SOR

- **9.** (a) PORPOQ $QOR \quad x \quad y$
 - POR $QOR \quad x \quad y \quad y \quad x$ (b)
 - (c) QOS SOR QOR ROS

(d)
$$POS$$
 QOR POQ POQ QOR ROS

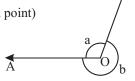
(by figure)

- ROS zPOR**10.** (a) *x* POQ*QOR* y
 - (b) *x* Z POQQORROSPOS y
 - (c) y ROS QOS QOR
 - PORQOR(d) *x* $Z \quad Z \quad X$ POQy

11. If
$$x = \frac{1}{3}$$
 right angle $\frac{1}{3} = 90 = 30$

$$y = \frac{2}{3}$$
 right angle $\frac{2}{3} = 90 = 2 = 30 = 60$

$$z = \frac{1}{2}$$
 right angle $\frac{1}{2} = 90 = 45$


12. If
$$x = 25$$
, $y = 60$, $POR = ?$

14. (a) If a 110, b?

360 (sum of all the small angles at a point) AOBBOA

b 360 110 250

b 250

(b) If *b* 200, *a* ?

> AOBBOA 360 (sum of all the angles at a point is 360°)

a 200 360

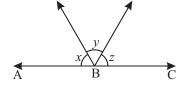
360 200 160

160

(c) If $a = \frac{5}{3}$ right angle 90 5 30 150, b?

a b 360 (sum of all the angles at a point is 360°)

150 210 b 360


15. (a) Given, x y 80, z 30

$$ABC$$
 x y z

80 80 30 190

ABC 190 180.

Hence, ABC is not a straight line.

(b) Given, x y z $\frac{2}{3}$ right angle

$$\frac{2}{3}$$
 $\frac{30}{90}$ 60

Since ABC 180.

Hence, ABC is a straight line.

 $x = \frac{2}{3}$ right angle (c) Given,

$$\frac{2}{3}$$
 90 60

(given)

(y 90)

$$z = \frac{1}{2}$$
 right angl

$$\frac{1}{2} \text{ right angle}$$

$$\frac{1}{2} 90 \quad 45$$

(z 195)

$$ABC$$
 x y z

60 45 90 195

ABC 195 180.

Hence, ABC is not a straight line.

(d) $z = 1\frac{1}{2}$ right angle

(given)

```
\frac{3}{2} \text{ right angle}
\frac{3}{2} \begin{array}{c} 45 \\ 90 \end{array} \quad 135
                                                                        (z 195)
                   ABC
                                y
                            30
                                 30
                                      135
                                              195
           Since
                       ABC
                               195
                                       180.
           Hence, ABC is not a straight line.
           \frac{1}{3} of 90°
                           90
16. (a)
                                                             (Sum of two angles is 90°)
                   90
                                               30
                                                     90
                                           а
                   90
                         30
                                                     60
                                                 а
             of 80^{\circ}
                                 20
                                                             (Sum of two angles is 90°)
              b
                                               20
                                                     90
               a
                   90
                         20
                                                     70
                                                 а
     (c) \frac{1}{2} of 60°
                                 30
                                                              (Sum of two angles is 90°)
                      b
                          90
                   30
                           90
                           90
                                 30
                                       60
                                                                 60
     (d) \frac{2}{5} of 70
                         70
                      b
                          90
                    28
                          90
                                                (Sum of two angles 90°)
                          90
                                 28
                                                  a 62
17. (a) 30°
                                                (Sum of two angles is 90°)
                    b
                        90
                    30
                          90
                                                a 90
                                                          30
                                                                60
                a
                    60
     (b) 80
                                                (Sum of two angles is 90°)
                    b
                        90
                    90
                          80
                                                a 10
     (c) 15
                                                (Sum of two angles is 90°)
                        90
                          90
                                                a 90
                                                          15
                                                                75
                    15
                а
     (d) 75
                                                (Sum of two angles is 90°)
                    b
                        90
                    75
                          90
                                                    90
                                                         75
                                                                45
                            15
     (e) 45°
                                                (Sum of two angles is 90°)
                    b
                        90
                        90
                                                a 90
                                                                 45
                 45
                                                          45
                         45
                     а
     (f) x
                             90
                                                (Sum of two angles is 90°)
                         b
                     а
                              90
                                                a 90
                     а
                         х
                                                          \chi
```

```
(g) 35°
                90
             b
                                    (Sum of two angles is 90°)
             35 90
                                a 90 35
                                             15
             55
(h) 10
          \nu
                90
                                     (Sum of two angles is 90°)
                        90
                                                  y a 80 y
             (10 \ y)
                                     a 90 10
     70°
(a)
                                     (∵Sum of two supplement angles is 180°)
             b 180
         a
                                                    110
                  180
                                              70
         а
   80°
(b)
               180
                                     (:: Sum of two supplement angles is 180°)
         a
             80
                180
                                     a 180
                                               80
                                                    100
         а
    195°
(c)
                                     (:: Sum of two supplement angles is 180°)
             b 180
                                              195
             195 180
                                                       15
         а
(d) 135
             b 180
                                     (:: Sum of two supplement angles is 180°)
                                             135 45
             135
                 180
                                     a 180
    40
(e)
             b 180
                                     (:: Sum of two supplement angles is 180°)
             40
                180
                                     a 180
                                               40
                                                    140
         а
    121
(f)
                                     (:: Sum of two supplement angles is 180°)
             b 180
         a
             121
                   180
                                     a 180
                                               121
(g) x
            b
               180
                                     (:: Sum of two supplement angles is 180°)
         а
                                     a 180
            x
         а
   20
(h)
          y
            b 180
                                     (:: Sum of two supplement angles is 180°)
         a
         a (20 y)
                                     a 180
                                                    v 160 v
(a) \frac{3}{4} of 160^{\circ} \frac{3}{4}
                   160
                                      (: Sum of two angles is 180°)
        a b 180
         a 120
                   180
                                     a 180
                                              120
                                                   60
    \frac{1}{2} of 120
                   120
         a b 180
                                     (:: Sum of two supplement angles is 180°)
         a 60
                180
                                     a 180
                                                    120
                                               60
(c) \frac{1}{3} of 150 \frac{1}{3}
            b 180
                                     (:: Sum of two supplement angles is 180°)
         а
            50
                  180
                                     a 180
                                               50
                                                    130
         а
(d) \frac{3}{5} of 100^{\circ} \frac{3}{5}
                  100
                          3 20
            b 180
                                     (:: Sum of two supplement angles is 180°)
         а
             60 180
                                     a 180
                                               60
         а
```

- **20.** Let angles be 7x, 8x
 - Angles are complementary

7x 8x 90 (: Sum of two complementary angles is 90°)
15x 90

$$x = \frac{90}{15} = 6$$

Thus, the angles are 7x 7 6 42 and 8x 8 6 48

21. Let angles be 7x, 11x(: Angles are supplementary)

7x 11x 180 (
$$\because$$
 Sum of two supplementary angles is 180°)
18x 180
x $\frac{180}{18}$ 10

Thus, the angles are 7x 7 10110 70 and 11x11 10

32

- $a \ 3x \ 15$, $b \ (2x \ 5)$, $x \ ?$ 22. Let b 180 (∵ Sum of two supplementary angles is 180°) 2x5 180 3x = 155x = 20180 5x 180 20 160 $x = \frac{160}{5}$
- **23.** Let A (2x 7), B (x 4)B 90 ••• A(: Sum of two complementary angles is 90°) 90 (2x x) (4 7) 90(2x 7) (x 4) $(3x \ 3) \ 90$ 3x90 3 31 χ
- **24.** (a) Let both the angles be x. (:: Angles are complement) *x* 90 2x90 $x = \frac{90}{2} = 45$ 45 x
 - (b) Let both the angles be x(: Angles are supplementary) 2x180 $x = \frac{180}{2} = 90$ 90 х
- **25.** (a) No, (b) No, a b 180 (Sum of linear pair is 180°) (c) a 90 180 a 180 90 90
 - (d) a b 180 obtuse angle b 180 obtuse angle = acute angle

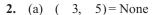
other angle is 90°

2x

26. Given BAD (5x30), CAD = 2x•: CAB is a straight angle CADBAD

180

180


 $(5x \ 30)$

7x30

$$\begin{array}{ccc} x & \frac{210}{7} & 3 \\ x & 30 \end{array}$$

Exercise 9.2

- 1. (a) 1 and 5 =Corresponding angles
 - (b) 4 and 7 = None
 - (c) 2 and 7 = Alternate interior angles
 - (d) 4 and 8 = Corresponding angles
 - (e) 1 and 8 = Alternate exterior angles

- (b) (4, 5) = Alternate interior angles
- (c) (1, 8) = Alternate exterior angles
- (d) (2, 4) = None
- **3.** (a) (1, 10) Corresponding angles
 - (b) (2, 8) = Alternate interior
 - (c) (5, 7) = None
 - (d) (6, 2) = Alternate exterior
 - (e) (4, 11) = Alternate interior
 - (f) (8, 10) = Alternate interior

(Corresponding angles)

a b

a

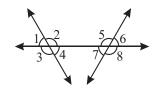
(Alternative interior angles) 80

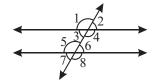
(Alternate interior angles)

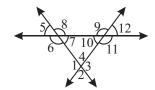
b a

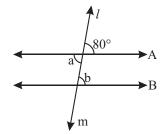
(Vertically opposite angles)

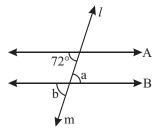
b 72

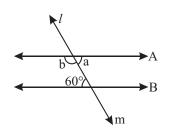


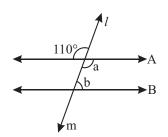

b 60 180

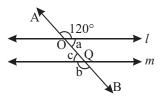

(Allied or conjoined angled)


b 180 60


b 120



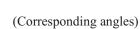




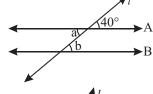
(d) $: a$	110		(Vertically opposite angle)
a 11	0 180		
			(Allied or conjoined angled)
a	b 180		
110	b 180		
	b 180	110	

(e) :: AOB is a straight line

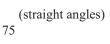
70 b

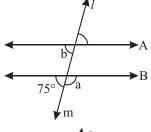

Now, AQB is a straight line

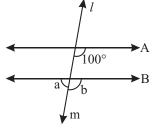
b40


a a 105

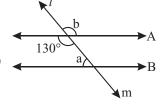
(f)


.:





(g) b75 (Corresponding angles) 75 180 (straight angles) 180

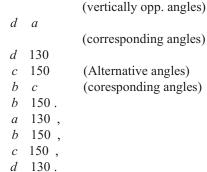


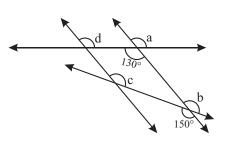
(h) :: b 100 (Corresponding angles) b180 (straight line) 100 180 180 100 80 80 a

(i) b 130 (Vertically opposite angle) 130 180 (Allied or conjoined angles)

180 130 а 50

```
5.
         60
                           (corresponding angle)
                           (corresponding angle)
                 \chi
               60
           Z
                  Z
                           (vertically opposite angle)
            p
               60
            p
               60
                    180
                           (straight line)
               60
                    180
               180
                      60
                           120
               120
                           (vertically opposite angle)
               120
           S
                           (corresponding angle)
                 S
               120
               60 \ z \ 60
    Hence, p = 60, q = 120, r = 120, s = 120.
6.
         AB is a straight line
         100
                P
                    180
                           [straight line]
                     180
                           100
                                  80
                 P
                     80
                    100
    •••
                                [vertically opp. angle]
                     100
                    P
                            [vertically opp. angle]
                 х
                    80
                 х
                    100
                                [corresponding angle]
                    100
                 z
                            [vertically opp. angle]
                     Z
                     100
                     180
                             [straight line]
             Z
           100
                     180
                 \nu
                     180
                           100 80
                 \nu
                     80
                120,
    Given
            1
                            60
                 3
                       1
                                (vertically opposite angle)
                 3
                     120
                                1 120 ]
                 2
                    180
                           [straight line]
                 2
        120
                    180
                 2
                     180
                            120
                                   60
                 2
                     60
                 5
    Similarly,
                       6
                          180
                           (straight line)
                 5
                       6
                          180
                          180
                       6
                                 120
                                        60
                          60
                       4
                             2
                                                 (vertically opposite angle)
                       4
                          60
```


(straight line)


5

180

5 60	180						
5	180	60	120				
5	120						
Now, since given,							
8	60						
7 8	180						

8. *a* 130

9. *AB* || *CD*

Hence

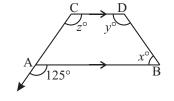
In Trapezium ABCD,

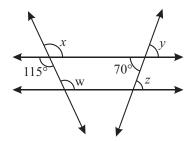
55 y 180

v 180 55 125

10.
$$y$$
 70 (Vertically opp. angles)

z y (corresponding angles)


z 70


 \therefore x 115 (vertically opp. angles)

w x (corresponding angles)

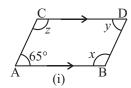
w 115

Hence, x = 115, y = 70, w = 115



11. Given, $AB \mid\mid CD \mid\mid EF CD \mid\mid EF$ and CE is a transversal

 \therefore AB || CD and BC is a transversal


$B \mid\mid CD$ and BC is a transversal								
	ABC	BCD [::	BCD	y	25]			
	75	y 25						
75	25	y						
	12	50						

12. Given $AB \mid\mid CD$, $AC \mid\mid BD$

(i) z = 65 - 180 (sum of co-interior angles)

AC || BD

x 180 65

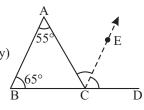
x 115

again, CD || AB

y x 180 (sum of co-interior angles) y 180 x y 180 115 65

Hence, x = 115, y = 65, z = 115

(ii) $CD \mid\mid AB \text{ and } AD \text{ is a transversal}$


x 35 (Alternate s) y 40 (Alternate s)

13. Given $CE \parallel BA$, ABC 65, BAC 55

ACE BAC (Alternate angles) 55

ACD A B (exterior angle property)

Now, ACD ACE ECD 120 55 ECD ECD 120 55 65

14. Given $AB \parallel CD$, $AE \parallel CF$ and FCG 90

 \therefore AB || CD and AC is a transversal

x 120 180

(co-interior angles are supplementry)

x 180 120 60

Now, $x \ y \ 90 \ 180$

(Angles at a point on a straight line)

60 *y* 90 180 *y* 180 150

y 180 150 30 Similarly, $AE \mid\mid CF$ and AC is a transversal

> z y 180 (co-interior angles are supplementary) z 30 180

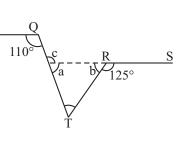
z 180 30 150

15. Given, PQ || RS

produce RS towards QT which meet QT at point $V.\overline{p}$

Now, $PQ \mid\mid VR$ and QT is a transversal

C 110 (alternate angles)

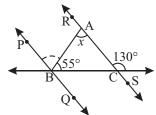

VS is a straight line

b 125 180 (linear pair)

b 180 125 55

Now, $\begin{array}{ccc} c & x & b \\ 110 & x & 55 \end{array}$ (exterior angle property)

120°


Hence, x 55

16. Given PQ || RS

In ABC, we know that

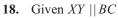
(exterior angle property)

x 75

17. *DC* || *AB*

$$y z$$
 (Alternative s)

y 75


Again $DC \mid\mid AB \& BC$ is a transversal

$$x y 180$$
 (sum of co-interiors s)

x 75 180

x 180 75 105

Hence, x = 105, y = 75, z = 75

B 50 (alternate angle)

Now In ABC,

47

19. Given l || m and p || q

a 75 (corresponding angles)

now,
$$x = a = 180$$
 (linear pair)

x 75 180

again, $l \mid\mid m$ and P is a transversal

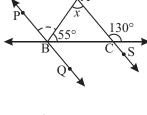
(sum of the interior angles on the same

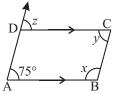
side of the transversal is 180°)

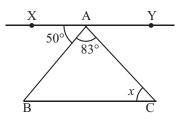
v 180 105

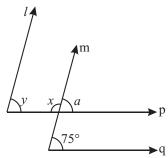
20. Produce BQ which meet CD at point P.

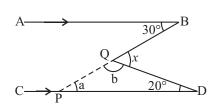
Now $AB \mid\mid CD$ and BP is a transversal


a 30

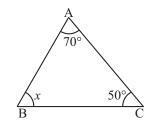

(alternate angles)

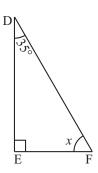

Now, In *POD*,


(sum of all the angles of a triangle)

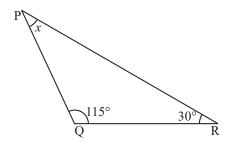

180 b 30 20

MCQ's

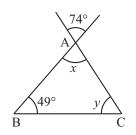

- **1.** (b) **2.** (b)
- **3.** (b)
- (a) **5.** (b) **6.** (a)


Triangles and Its Properties

Exericise 10.1


A B C 180 (sum of the angles of a triangle is
$$180^{\circ}$$
)

70 50 x 180



(c) In PQR,

x 74 (vertically opposite angle) (d)

